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Proposed Model

Mixture of Asymmetric Gaussian Distributions

Asymmetric Gaussian Mixture
Model (AGMM)

p Zi

Xiµ
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σr
N

Graphical representation of an
asymmetric Gaussian mixture model

Mathmatical Definition

p(X ,Z|Θ) =
N∏

i=1

K∏
j=1

(
p(X⃗i |ξj )pj

)Zij

(1)

p
(

X⃗i |ξj
)

is the PDF of
AGMM
Asymmetric property
Unbounded support
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Mixture of Bounded Asymmetric Gaussian Distributions

Add bounded support

p(X⃗ |ξj ) =
f (X⃗ |ξj )H(X⃗ |Ωj )∫

∂j
f (⃗u|ξj )du

,where H(X⃗ |Ωj ) =

{
1 if X⃗ ∈ ∂j
0 otherwise

(2)

Definition

f (X⃗ |ξj ) =
D∏

d=1

2
√

2π(σljd + σrjd )


exp

[
− (Xd−µjd )

2

2σ2
ljd

]
if Xd < µjd

exp

[
− (Xd−µjd )

2

2σ2
rjd

]
if Xd ≥ µjd

(3)

where f (X⃗ |ξj ) is the PDF of AGMM
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Minimum Message Length (MML)

Mess Len(K ) ≃ − log (p (ΘK ))− L (ΘK ,Z ,X ) +
1
2 log |F (ΘK )|

+
Np
2

(
1 + log

(
1
12

))
(4)

ΘK set of parameters when mixture contains K components

p(ΘK ) prior probability

L (ΘK ,Z ,X ) log-likelihood of mixture model

|F (ΘK )| determinant of Fisher information matrix

Np number of parameters (equal to K (3D + 1))
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Derivation of the prior p(Θ)

p(Θ) = p(π)p(µ)p(σl)p(σr ) (5)

p(π) =
Γ(
∑K

j=1 ηj)∑K
j=1 Γ(ηj)

K∑
j=1

pj
ηj−1 (6)

p(µjd) =
1

σld + σrd
=⇒ p(µ⃗j) =

D∏
d=1

1
σld + σrd

(7)

p(σl) =
K∏

j=1
p(σ⃗lj ), p(σr ) =

K∏
j=1

p(σ⃗rj ) (8)

Replacing parameters in Eq. (5) by Eqs. (6 & 7 & 8)

p(Θ) = (M − 1)!
D∏

d=1

1
σld

Kσrd
K (σld + σrd)

K (9)
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Derivation of the Fisher information matrix |F (Θ)|

|F (Θ)| = |F (π)||F (µ)||F (σl)||F (σr )| (10)

Approximate the Hessian matrix by complete-data Fisher
information matrix

|F (π)| = NK−1∑K
j=1 pj

, F (µ⃗j)k1,k2 =
∂2L(Θ,Z ,Xj)

∂µjk1∂µjk2

(11)

F (σ⃗lj )k1,k2 =
∂2L(Θ,Z ,Xj)

∂σljk1
∂σljk2

, F (σ⃗rj )k1,k2 =
∂2L(Θ,Z ,Xj)

∂σrjk1
∂σrjk2

(12)
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Model Learning Algorithm

Algorithm 1 Model Learning for BAGMM
1: Input:Dataset X = {X⃗1, . . . , X⃗N}, tmin, Kmin, Kmax .
2: Output: Θ, Z, K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K -Means (Compute µ⃗1, . . . , µ⃗K & cluster assignment)
6: for all 1 ≤ j ≤ K do
7: Computation of pj and {(σ⃗lj & σ⃗rj )=σ⃗j}
8: {Expectation Maximization}:
9: while relative change in log-likelihood ≥ tmin or iterations ≤ epochmax or relative

changes of parameters ≥ tmin do
10: {[E Step]}:
11: for all 1 ≤ j ≤ K do
12: Compute p(j|X⃗i ) for i = 1, . . . ,N.
13: {[M step]}:
14: update bounded support range
15: for all 1 ≤ j ≤ K do
16: Estimate pj , µ⃗j , σ⃗lj & σ⃗rj
17: end while
18: Compute K∗ = argminMML(K)
19: end for
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Synthetic Datasets

Model Selection Results

Table: The model selection and clustering results for synthetic dataset

‘

Synthetic Dataset(2,000 instances in each cluster)
clusters µ, σl , σr AIC BIC CAIC MDL MMDL MML like LEC MML

(2, -4) , (2, 3) , (1, 5)
2 (5, 4), (3, 6), (2.1, 3.8) 2 2 2 2 2 2 2 2

(2, -4), (2, 3), (1, 5)
3 (5, 4), (3, 6), (2.1, 3.8) 3 3 3 3 3 3 3 3

(-10, 12), (3, 3.7), (3.4, 5.9)
(2, -4), (2, 3), (1, 5)

4 (5, 4), (3, 6), (2.1, 3.8) 4 4 4 4 4 4 4 4
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(2, -4), (2, 3), (1, 5)

5 (5, 4), (3, 6), (2.1, 3.8) 5 5 5 5 5 5 5 5
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(-15, 16.6),(3.3, 4.4), (2.8, 2.7)
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Synthetic Datasets

Execution Information

Table: Execution information of MML on synthetic dataset

‘

Execution information on synthetic dataset(seconds)
Mixture Models Clusters Time Accuracy Iterations

BAGMM 2 clusters 2.35 71.3% 5
BAGMM 3 clusters 8.60 85.7% 2
BAGMM 4 clusters 12.09 72.2% 4
BAGMM 5 clusters 12.58 65.7% 5

All experiments are running on a Macbook Pro 2015 with
Dual-Core Intel Core i5 CPU. The BAGMM is as relatively fast as
the AGMM for 5 clusters or more, but in the case of less than 5
clusters, the AGMM is a little bit faster. The BAGMM always
converges faster than the AGMM with less iterations.
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Real Datasets

Model Selection Results

Real Dataset
dataset N D K AIC BIC CAIC MDL MMDL MML like LEC MML

Indian Liver Patient(AGMM) 583 10 2 4 2 2 2 4 4 2 2
Indian Liver Patient(BAGMM) 2 2 2 2 2 2 2 2

Iris(AGMM) 150 4 3 6 3 3 3 3 6 6 6
Iris(BAGMM) 6 6 6 6 6 6 3 3

Vertebral(AGMM) 310 6 3 3 3 3 3 3 3 3 3
Vertebral(BAGMM) 5 3 3 3 5 5 3 3

Wine Quality(red)(AGMM) 1599 11 6 5 5 5 5 5 5 6 6
Wine Quality(red)(BAGMM) 8 8 8 8 8 8 6 6

Spect Heart(AGMM) 80 44 2 6 4 2 4 4 6 2 2
Spect Heart(BAGMM) 5 2 2 2 5 5 2 2
Cryotherapy(AGMM) 90 6 2 2 2 2 2 2 2 2 2

Cryotherapy(BAGMM) 6 2 2 2 6 6 2 2
Immunotherapy(AGMM) 90 7 2 3 2 2 2 3 3 2 2

Immunotherapy(BAGMM) 2 2 2 2 2 2 2 2
Statlog(Heart)(AGMM) 270 13 2 6 6 2 6 6 6 6 6

Statlog(Heart)(BAGMM) 2 2 2 2 2 2 2 2
Parkinsons(AGMM) 197 22 2 6 6 6 6 6 6 6 6

Parkinsons(BAGMM) 2 2 2 2 2 2 2 2
Haberman Survival(AGMM) 306 3 2 2 2 2 2 2 2 2 2

Haberman Survival(BAGMM) 2 2 2 2 2 2 2 2

Table: The model selection results for real dataset
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Occupancy Detection

Occupancy Detection

Detect room occupancy as a binary classification from CO2, light,
Humidity, temperature, and humidity ratio, which were taken every
minute.

Table: Occupancy estimation and model selection results

Models N D K AIC BIC CAIC MDL MMDL MML like LEC MML Acc
AGMM 9752 5 2 5 5 5 5 5 5 5 5 79%

BAGMM 2 2 2 2 2 2 2 2 94.8%
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Conclusion

Proposed model selection criterion for bounded support
asymmetric Gaussian mixture model (BAGMM) using
minimum message length (MML)
Validated using synthetic data, real data and occupancy
detection application
Compared with asymmetric Gaussian mixture model (AGMM)
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