Model Selection Criterion for Multivariate Bounded Asymmetric Gaussian Mixture Model

Zixiang Xian ¹ Muhammad Azam ¹ Manar Amayri ^{1,2} Nizar Bouguila ¹

¹Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada

²Grenoble Institute of Technology, Grenoble, France

EUSIPCO June 15, 2021

Proposed Model	Model Selection	Experimental Results	Conclusion
00		0000	O

Outline

2 Model Selection

3 Experimental Results

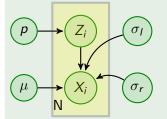
- Synthetic Datasets
- Real Datasets
- Occupancy Detection

4 Conclusion

Proposed Model	Model Selection	Experimental Results	Conclusion
●O		0000	O
Proposed Model			

Mixture of Asymmetric Gaussian Distributions

Asymmetric Gaussian Mixture Model (AGMM)



Graphical representation of an asymmetric Gaussian mixture model

Mathmatical Definition

$$p(\mathcal{X}, \mathcal{Z}|\Theta) = \prod_{i=1}^{N} \prod_{j=1}^{K} \left(p(\vec{X}_{i}|\xi_{j})p_{j} \right)^{Z_{ij}}$$
(1)

•
$$p\left(\vec{X}_i|\xi_j\right)$$
 is the PDF of AGMM

- Asymmetric property
- Unbounded support

Proposed Model	Model Selection	Experimental Results	Conclusion
00			

Mixture of Bounded Asymmetric Gaussian Distributions

Add bounded support $p(\vec{X}|\xi_j) = \frac{f(\vec{X}|\xi_j)H(\vec{X}|\Omega_j)}{\int_{\partial_j} f(\vec{u}|\xi_j)du}, \text{ where } H(\vec{X}|\Omega_j) = \begin{cases} 1 & \text{if } \vec{X} \in \partial_j \\ 0 & \text{otherwise} \end{cases}$ (2)

Definition

$$f(\vec{X}|\xi_j) = \prod_{d=1}^{D} \frac{2}{\sqrt{2\pi}(\sigma_{l_{jd}} + \sigma_{r_{jd}})} \begin{cases} \exp\left[-\frac{(X_d - \mu_{jd})^2}{2\sigma_{l_{jd}}^2}\right] & \text{if } X_d < \mu_{jd} \\ \exp\left[-\frac{(X_d - \mu_{jd})^2}{2\sigma_{l_{jd}}^2}\right] & \text{if } X_d \ge \mu_{jd} \end{cases}$$
(3)

where $f(\vec{X}|\xi_j)$ is the PDF of AGMM

Proposed Model	Model Selection	Experimental Results	Conclusion
	0000		

Minimum Message Length (MML)

$$\begin{aligned} \operatorname{\mathsf{Mess}} \operatorname{\mathsf{Len}}(\mathcal{K}) &\simeq -\log\left(p\left(\Theta_{\mathcal{K}}\right)\right) - \mathcal{L}\left(\Theta_{\mathcal{K}}, Z, \mathcal{X}\right) + \frac{1}{2}\log\left|F\left(\Theta_{\mathcal{K}}\right)\right| \\ &+ \frac{N_{p}}{2}\left(1 + \log\left(\frac{1}{12}\right)\right) \end{aligned} \tag{4}$$

 Θ_{K} set of parameters when mixture contains K components $p(\Theta_{K})$ prior probability

- $\mathcal{L}(\Theta_{\mathcal{K}}, Z, \mathcal{X})$ log-likelihood of mixture model
 - $|F(\Theta_{\kappa})|$ determinant of Fisher information matrix

 N_p number of parameters (equal to K(3D+1))

Proposed Model	Model Selection	Experimental Results	Conclusion
00	0●00	0000	O
Destantion			

Derivation of the prior $p(\Theta)$

$$p(\Theta) = p(\pi)p(\mu)p(\sigma_l)p(\sigma_r)$$
(5)

$$\rho(\pi) = \frac{\Gamma(\sum_{j=1}^{K} \eta_j)}{\sum_{j=1}^{K} \Gamma(\eta_j)} \sum_{j=1}^{K} \rho_j^{\eta_j^{-1}}$$
(6)

$$p(\mu_{jd}) = \frac{1}{\sigma_{ld} + \sigma_{rd}} \implies p(\vec{\mu}_j) = \prod_{d=1}^{D} \frac{1}{\sigma_{ld} + \sigma_{rd}}$$
(7)
$$p(\sigma_l) = \prod_{j=1}^{K} p(\vec{\sigma}_{l_j}), \quad p(\sigma_r) = \prod_{j=1}^{K} p(\vec{\sigma}_{r_j})$$
(8)

Replacing parameters in Eq. (5) by Eqs. (6 & 7 & 8)

$$p(\Theta) = (M-1)! \prod_{d=1}^{D} \frac{1}{\sigma_{l_d}{}^K \sigma_{r_d}{}^K (\sigma_{ld} + \sigma_{rd})^K}$$
(9)

Proposed Model	Model Selection	Experimental Results	Conclusion
00	00●0	0000	0

Derivation of the Fisher information matrix $|F(\Theta)|$

$$|F(\Theta)| = |F(\pi)||F(\mu)||F(\sigma_l)||F(\sigma_r)|$$
(10)

Approximate the Hessian matrix by complete-data Fisher information matrix

$$|F(\pi)| = \frac{N^{K-1}}{\sum_{j=1}^{K} p_j}, \quad F(\vec{\mu}_j)_{k_1,k_2} = \frac{\partial^2 \mathcal{L}(\Theta, Z, \mathcal{X}_j)}{\partial \mu_{jk_1} \partial \mu_{jk_2}}$$
(11)

$$F(\vec{\sigma}_{l_j})_{k_1,k_2} = \frac{\partial^2 \mathcal{L}(\Theta, Z, \mathcal{X}_j)}{\partial \sigma_{l_{jk_1}} \partial \sigma_{l_{jk_2}}}, \quad F(\vec{\sigma}_{r_j})_{k_1,k_2} = \frac{\partial^2 \mathcal{L}(\Theta, Z, \mathcal{X}_j)}{\partial \sigma_{r_{jk_1}} \partial \sigma_{r_{jk_2}}}$$
(12)

Proposed Model	Model Selection	Experimental Results	Conclusion	
00	000●	0000	O	

Model Learning Algorithm

Algorithm 1 Model Learning for BAGMM

- 1: Input:Dataset $\mathcal{X} = \{\vec{X}_1, \dots, \vec{X}_N\}$, t_{min} , K_{min} , K_{max} .
- 2: **Output**: Θ , \mathcal{Z} , K^* .
- 3: for $K_{min} \leq K \leq K_{max}$ do
- 4: {Initialization}:
- 5: K-Means (Compute $\vec{\mu}_1, \ldots, \vec{\mu}_K$ & cluster assignment)
- 6: for all $1 \le j \le K$ do
- 7: Computation of p_j and $\{(\vec{\sigma}_{l_j} \& \vec{\sigma}_{r_j}) = \vec{\sigma}_j\}$
- 8: {Expectation Maximization}:
- 9: while relative change in log-likelihood $\geq t_{min}$ or iterations $\leq epoch_{max}$ or relative changes of parameters $\geq t_{min}$ do

18: Compute
$$K^* = \arg \min MML(K)$$

19: end for

Synthetic Datasets Model Selection			
Synthetic Datasets			
Proposed Model	Model Selection	Experimental Results	Conclusion O

Table: The model selection and clustering results for synthetic dataset

	Synthetic Dataset(2,000 inst	tan	ces	s in	eac	h clu	ister)		
clusters	μ , σ_I , σ_r	AIC	віс	CAIC	MDL	MMDL	MML like	LEC	MML
	(2, -4) , (2, 3) , (1, 5)								
2	(5, 4), (3, 6), (2.1, 3.8)	2	2	2	2	2	2	2	2
	(2, -4), (2, 3), (1, 5)								
3	(5, 4), (3, 6), (2.1, 3.8)	3	3	3	3	3	3	3	3
	(-10, 12), (3, 3.7), (3.4, 5.9)								
	(2, -4), (2, 3), (1, 5)								
4	(5, 4), (3, 6), (2.1, 3.8)	4	4	4	4	4	4	4	4
	(-10, 12), (3, 3.7), (3.4, 5.9)								
	(-13, 14), (1, 2.1), (3, 3)								
	(2, -4), (2, 3), (1, 5)								
5	(5, 4), (3, 6), (2.1, 3.8)	5	5	5	5	5	5	5	5
	(-10, 12), (3, 3.7), (3.4, 5.9)								
	(-13, 14), (1, 2.1), (3, 3)								
	(-15, 16.6),(3.3, 4.4), (2.8, 2.7)								

Execution Info	mation		
Synthetic Datasets			
Proposed Model	Model Selection	Experimental Results 0●00	Conclusion O

Table: Execution information of MML on synthetic dataset

Execution information on synthetic dataset(seconds)				
Mixture Models				Iterations
	2 clusters			5
	3 clusters			2
BAGMM	4 clusters	12.09	72.2%	4
BAGMM	5 clusters	12.58	65.7%	5

All experiments are running on a Macbook Pro 2015 with Dual-Core Intel Core i5 CPU. The BAGMM is as relatively fast as the AGMM for 5 clusters or more, but in the case of less than 5 clusters, the AGMM is a little bit faster. The BAGMM always converges faster than the AGMM with less iterations.

Model Selection Re	esults		
Real Datasets			
Proposed Model	Model Selection	Experimental Results	Conclusion O

Real Dataset											
dataset	N	D	K	AIC	BIC	CAIC	MDL	MMDL	MML like	LEC	MML
Indian Liver Patient(AGMM)	583	10	2	4	2	2	2	4	4	2	2
Indian Liver Patient(BAGMM)	505			2	2	2	2	2	2	2	2
Iris(AGMM)	150	4	3	6	3	3	3	3	6	6	6
Iris(BAGMM)	130			6	6	6	6	6	6	3	3
Vertebral(AGMM)	310	6	3	3	3	3	3	3	3	3	3
Vertebral(BAGMM)	510		5	5	3	3	3	5	5	3	3
Wine Quality(red)(AGMM)	1599	11	6	5	5	5	5	5	5	6	6
Wine Quality(red)(BAGMM)				8	8	8	8	8	8	6	6
Spect Heart(AGMM)	80	44	2	6	4	2	4	4	6	2	2
Spect Heart(BAGMM)	00			5	2	2	2	5	5	2	2
Cryotherapy(AGMM)	90	6	2	2	2	2	2	2	2	2	2
Cryotherapy(BAGMM)	50		2	6	2	2	2	6	6	2	2
Immunotherapy(AGMM)	90	7	2	3	2	2	2	3	3	2	2
Immunotherapy(BAGMM)	30		2	2	2	2	2	2	2	2	2
Statlog(Heart)(AGMM)	270	13	2	6	6	2	6	6	6	6	6
Statlog(Heart)(BAGMM)				2	2	2	2	2	2	2	2
Parkinsons(AGMM)	197	22	2	6	6	6	6	6	6	6	6
Parkinsons(BAGMM)	191		2	2	2	2	2	2	2	2	2
Haberman Survival(AGMM)	306	3	2	2	2	2	2	2	2	2	2
Haberman Survival(BAGMM)	300	J	1	2	2	2	2	2	2	2	2

Proposed Model	Model Selection	Experimental Results	Conclusion
		0000	
Occupancy Detection			
Occupancy De	tection		

Detect room occupancy as a binary classification from CO2, light, Humidity, temperature, and humidity ratio, which were taken every minute.

Table: Occupancy estimation and model selection results

Models	Ν	D	K	AIC	BIC	CAIC	MDL	MMDL	MML like	LEC	MML	Acc
AGMM	0752	Б	2	5	5	5	5	5	5	5	5	79%
BAGMM	9152	5	2	2	2	2	2	2	2	2	2	94.8%

Proposed Model	Model Selection	Experimental Results	Conclusion
00		0000	•

Conclusion

- Proposed model selection criterion for bounded support asymmetric Gaussian mixture model (BAGMM) using minimum message length (MML)
- Validated using synthetic data, real data and occupancy detection application
- Compared with asymmetric Gaussian mixture model (AGMM)

References

For Further Reading I

 Zixiang Xian, Muhammad Azam, Manar Amayri, Nizar Bouguila Model Selection Criterion for Multivariate Bounded Asymmetric Gaussian Mixture Model
 29th European Signal Processing Conference, EUSIPCO 2021