Model Selection Criterion for Multivariate
Bounded Asymmetric Gaussian Mixture
Model

1 1 2

Muhammad Azam Manar Amayri 1

Nizar Bouguila !

Zixiang Xian

L Concordia Institute for Information Systems Engineering Concordia University,
Montreal, Canada

2Grenoble Institute of Technology, Grenoble, France

EUSIPCO June 15, 2021 —
CConcord ia



Outline

© Proposed Model
© Model Selection

© Experimental Results
@ Synthetic Datasets
@ Real Datasets
@ Occupancy Detection

@ Conclusion

—\\?Concordia



Proposed Model
[ e}

Proposed Model

Mixture of Asymmetric Gaussian Distributions

Asymmetric Gaussian Mixture
Model (AGMM)
N K =)
p(x, 210) = [T (p(Xilg)es) ™
i=1 j=1
C (1)

°p ()?,—\gj) is the PDF of
®+CT®
N

@ Asymmetric property

. . @ Unbounded support
Graphical representation of an /

asymmetric Gaussian mixture model
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Mixture of Bounded Asymmetric Gaussian Distributions

Add bounded support

FXIEHXI) 1 if Xeo )
faj f(dl¢;)du 0 otherwise

p(Xl&) = ,where H(X|Q;) = {
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where f(X|¢;) is the PDF of AGMM
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Minimum Message Length (MML)

MessLen(K) ~ —log (p(©k)) — L(Ok, Z,X) + % log |F (©k)|
N 1
+ 7’3 <1 + log (12>>
(4)

Ok set of parameters when mixture contains K components
p(©k) prior probability
L(Ok,Z,X) log-likelihood of mixture model
|F(©k)| determinant of Fisher information matrix

N, number of parameters (equal to K(3D + 1))
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Derivation of the prior p(©)

p(kja) = 7% oo

Replacing parameters in Eq. (5) by Eqs. (6 & 7 & 8)

p(©) = (M —1)! H K (9)

SG (U/d + 0rq)
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Derivation of the Fisher information matrix |F(O)|

[F(©) = [F(m)IIF)IIF (n)lIF (o)l (10)

Approximate the Hessian matrix by complete-data Fisher

information matrix

NK-1 9?’L(O,Z, X))
F(r)l = B F(ii: — 2 N =) 11
el Py ek Otk Oy &
2L(0,Z, X)) 9*L(9,Z, X))
F(3: Sdied St ki M LAY S5 8 =~ D= (12
(T ks o 3o, 01, (G )k ke Doy, 00y, (12)
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Model Learning Algorithm

Algorithm 1 Model Learning for BAGMM

1: Input:Dataset X = {Xl,...,)?N}, tmin, Kmin» Kmax.-

2: Qutput: ©, Z, K*.

3: for Knin < K < Kmax do

4:  {lInitialization}:

5:  K-Means (Compute fi1, ..., fix & cluster assignment)
6: foralll1 <j<Kdo
7
8
9

Computation of p; and {(& & &;)=0;}
{Expectation Maximization}:
while relative change in log-likelihood > tni, or iterations < epochmax or relative
changes of parameters > ty;, do

10: {[E Step]}:

11: forall1 <j< K do

12: Compute p(j|)?,-) fori=1,...,N.

13: {[M step]}:

14: update bounded support range

15: forall1 <j< K do

16: Estimate pj, fi;, Elj & &y,

17:  end while = .
18:  Compute K* = arg min MML(K) \/CODCOTd la
19: end for
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Table: The model selection and clustering results for synthetic dataset

Synthetic Dataset(2,000 instances in each cluster)
clusters K, O, O AIC|BIC|CAIC|MDL|MMDL|MML like| LEC|MML
(2.-4),(2.3), (1, 5)
2 (5, 4), (3, 6), (2.1, 3.8) 212122 2 2 2|2
(2, -4), (2.3), (1, 5)
3 (5, 4), (3,6), (2.1, 3.8) 3/13/3|13[3] 3 [3]3
(-10, 12), (3, 3.7), (3.4, 5.9)
‘ (2,-4), (2,3), (1, 5)
4 (5.4), (3.6), (21,38) |4|a|4a|a| a| 4 |4a]4
(-10, 12), (3, 3.7), (3.4, 5.9)
(-13, 14), (1, 2.1), (3, 3)
(2, -4), (2.3), (1, 5)
5 (5. 4), (3,6), (21,38) |5|5/5|5| 5| 5 |5|5
(-10, 12), (3, 3.7), (3.4, 5.9)
(-13, 14), (1, 2.1), (3, 3)
(-15, 16.6),(3.3, 4.4), (2.8, 2.7)
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Synthetic Datasets

Execution Information

Table: Execution information of MML on synthetic dataset

Execution information on synthetic dataset(seconds)
Mixture Models| Clusters |Time|Accuracy| lterations
) BAGMM 2 clusters|2.35 | 71.3% 5
BAGMM 3 clusters| 8.60 | 85.7% 2
BAGMM 4 clusters|12.09| 72.2% 4
BAGMM 5 clusters|12.58| 65.7% 5

All experiments are running on a Macbook Pro 2015 with
Dual-Core Intel Core i5 CPU. The BAGMM is as relatively fast as
the AGMM for 5 clusters or more, but in the case of less than 5
clusters, the AGMM is a little bit faster. The BAGMM always
converges faster than the AGMM with less iterations.
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Real Datasets

Model Selection Results

Real Dataset

dataset N |D|K|AICBIC|ICAICIMDLMMDL|MML like|LECIMML
Indian Liver Patient(AGMM) 4|2 2 2 4 4 2 2
Indian Liver Patient(BAGMM) 5831102 212 2 2 2 2 2 2
Iris(AGMM) 6|3 3 3 3 6 6 6
Iris(BAGMM) 150143 66| 6 6 6 6 3 3
Vertebral(AGMM) 313 3 3 3 3 3 3
Vertebral(BAGMM) 310163 53] 3 3 5 5 3] 3
Wine Quality(red)(AGMM) 5|5 5 5 5 5 6 6
Wine Quality(red)(BAGMM) 1599/11/6 88| 8 8 8 8 6 6
Spect Heart(AGMM) 6| 4 2 4 4 6 2 2
Spect Heart(BAGMM) 80 (442 512 2 2 5 5 2 2
Cryotherapy(AGMM) 90 |62 2|2 2 2 2 2 2 2
Cryotherapy(BAGMM) 6|2 2 2 6 6 2 2
Immunotherapy(AGMM) 90 | 712 3|2 2 2 3 3 2 2
Immunotherapy(BAGMM) 2|2 2 2 2 2 2 2
Statlog(Heart)(AGMM) 6|6 2 6 6 6 6 6
Statlog(Heart)(BAGMM) 270132 212 2 2 2 2 2 2
Parkinsons(AGMM) 6|6 6 6 6 6 6 6
Parkinsons(BAGMM) 1072212 2 2 2 2 2 2 2 2
Haberman Survival(AGMM) 2 2 2 2 2 2 2 2
Haberman Survival(BAGMM) 306|132 212 2 2 2 2 2 2
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Occupancy Detection

Occupancy Detection

Detect room occupancy as a binary classification from CQO2, light,
Humidity, temperature, and humidity ratio, which were taken every
minute.

Table: Occupancy estimation and model selection results

Models | N |D|K|AIC|BIC|ICAIC|IMDLMMDL|MML like|LECIMML| Acc

AGMM 5|5 5 5 5 5 5 5 79%
BAGMM *4°% 22 T2 T2 T2 [ 2 2 2 2 [94.8%
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Conclusion

@ Proposed model selection criterion for bounded support
asymmetric Gaussian mixture model (BAGMM) using
minimum message length (MML)

@ Validated using synthetic data, real data and occupancy
detection application

e Compared with asymmetric Gaussian mixture model (AGMM)
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