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Abstract—To determine the structure of high dimensional data
without knowing the number of clusters nor the importance of the
involved features, we propose an unsupervised feature selection
framework using the bounded asymmetric Gaussian mixture
model (BAGMM-FS). The bounded asymmetric Gaussian distri-
bution has an asymmetric shape and bounded range, making it a
good choice for modeling real-world data. We propose a param-
eter learning approach based on the expectation-maximization
(EM) algorithm, and we approach the model selection task using
the minimum message length (MML) criterion. The validation
involves several human-related recognition challenges, such as
human activity categorization and human gender recognition. It’s
examined from all experiments and results that BAGMM-FS has
good modeling capabilities and outperforms other comparable
mixture models, especially for high dimensional complex datasets.

Index Terms—Bounded asymmetric Gaussian mixture model
(BAGMM), Expectation-maximization (EM), Feature selection,
Model selection, Minimum message length (MML), Activity
categorization, Gender recognition.

I. INTRODUCTION

Finite mixture models [1], [2] are widely applied in a wide
range of machine learning applications because of their sound
mathematical basis as an unsupervised learning approach.
Research areas in which mixture models have been applied in-
clude data mining, image processing, computer vision, pattern
recognition, etc. [2]. The most common finite mixture model,
the Gaussian mixture model (GMM), has been widely studied
in the past. However, the Gaussian distribution assumes that
the data is symmetric and has an infinite range, which prevents
it from having a good modeling capability in the presence
of outliers. Therefore, some researchers have put forward the
generalized Gaussian mixture model (GGMM) [3], [4], which
can consider different shapes by changing its shape parameters
that control the distribution’s tail. Other research works have
focused on the distribution support to make it more suitable
for real-world data, which are always defined with bounded
range. These research works include the bounded Gaussian
mixture model (BGMM) that has been studied in [5], and
the bounded generalized Gaussian mixture model (BGGMM),
which augmented GGMM with bounded range as discussed
in [6], [7]. Although the BGGMM provides higher flexibility
for modeling various data shapes with bounded support, it is
still symmetric that is inappropriate to model non-symmetrical
data. Note that most real-world data are asymmetric which is

especially true in natural images, as shown in [8]. The asym-
metric Gaussian mixture model (AGMM) has been proposed
to tackle that problem by having two variance parameters
controlling the left and right parts of the distribution [9],
[10]. Some latest research works have shown that bounded
asymmetric mixture models, which we will consider in this
paper, are reliable for image processing and computer vision
applications [11]. Moreover, the work [12] proposed the
bounded asymmetric Gaussian mixture model (BAGMM) and
has shown that it generally performs better than the AGMM
in clustering tasks [12].

The most general approach for parameter estimation in
mixture models is based on maximizing the likelihood func-
tion through the expectation-maximization (EM) framework
[13]. Generally, the EM algorithm requires an appropriate
number of clusters found by model selection criteria. From
a computational perspective, model selection approaches can
be categorized into three classes as stochastic (e.g. Markov
Chain Monte Carlo), deterministic, and re-sampling methods.
Deterministic approaches that have been applied in the case of
mixture models include Akaike’s information criterion (AIC)
[14], Schwarz’s Bayesian information criterion (BIC) [15],
the Laplace empirical criterion (LEC) [16] and minimum
message length (MML) [9], [17], etc. More details about
model selection can be found in [1]. The MML has been
shown to have better performance among most model selection
criteria in most cases. Apart from model selection, a crucial
problem in real life applications is related to high-dimensional
data. In theory, the more features we have to represent a
given object, the better performance we obtain for mixture-
based modeling. However, in many cases irrelevant features
can compromise the effectiveness of clustering and increase
the computational complexity. Hence, irrelevant feature should
be given small weights or even discarded. Selecting a relevant
feature space is generally known as feature selection and
sometimes also called variable selection or subset selection.
Although feature selection has been mainly discussed in the
context of supervised learning [18], there also have been some
unsupervised feature selection techniques and some of them
have been proposed in the context of mixture models (see, for
instance, [19]–[21]). This paper investigates the effectiveness
of feature selection using AGMM (AGMM-FS) in several
human related recognition challenging tasks such as activity



recognition and gender recognition [22]. The learning of the
parameters is performed using MML and the resulting model
is compared with other well-known mixture models using
various clustering metrics.

The remainder of this paper is organized as follows: After
the introduction, we present the bounded asymmetric Gaus-
sian mixture model with feature selection (BAGMM-FS) in
detail in Section II. In Section III, we develop the model’s
learning approach and give the complete learning algorithm.
The Section IV presents the experimental results on some
challenging real-world applications where the BAGMM-FS is
compared with other models. The conclusion and future works
are presented in Section V.

II. BOUNDED ASYMMETRIC GAUSSIAN MIXTURE MODEL

Given a D-dimensional random variable ~X = [X1, . . . , XD]
that follows a K-component mixture distribution, its probabil-
ity density function (PDF) can be written as:

p( ~X|Θ) =

K∑
j=1

p( ~X|ξj)pj (1)

where pj are the mixing weights that satisfy pj ≥ 0,∑K
j=1 pj = 1, ξj is the parameter of the distribution associated

with jth cluster and Θ = (ξ1, · · · , ξK , p1, · · · , pK) is the
complete set of parameters of the AGMM. The PDF associated
with each component is the multidimensional asymmetric
Gaussian distribution (AGD):

f( ~X|ξj) =

D∏
d=1

2
√

2π(σljd + σrjd)
×



exp

[
−

(Xd−µjd)2

2σ2
ljd

]
Xd < µjd

exp

[
−

(Xd−µjd)2

2σ2
rjd

]
Xd ≥ µjd

(2)

where ξj = (~µj , ~σlj , ~σrj ) represents the parameters of AGD.
Here, ~µj = (µj1, ..., µjD), ~σlj = (σlj1 , ..., σljD ), and ~σrj =
(σrj1 , ..., σrjD ) are the mean, left standard deviation and right
standard deviation of the D-dimensional AGD, respectively.
The bounded asymmetric Gaussian distribution (BAGD) for
the vector ~X can be written as:

p( ~X|ξj) =
f( ~X|ξj)H( ~X|Ωj)∫

∂j
f(~u|ξj)du

(3)

where H( ~X|Ωj) =

{
1 if ~X ∈ ∂j
0 otherwise

Here, f( ~X|ξj) is the AGD, the term
∫
∂j
f(~u|ξj)du in Eq. (3)

is the normalized constant that shows the share of f( ~X|ξj)
which belongs to the support region ∂. Consider a set of
independent and identically distributed vectors represented by
X = ( ~X1, · · · , ~XN ), arising from a mixture of BAGDs with
K components, then its log-likelihood function can be defined
as follows:

p(X|Θ) =

N∏
i=1

K∑
j=1

p( ~Xi|ξj)pj (4)

We introduce stochastic indicator vectors ~Zi = (Zi1, ..., ZiK),
which satisfy Zij ∈ {0, 1},

∑K
j=1 Zij = 1. In other words,

Zij , the hidden variable in each indicator vector, equals 1 if
~Xi belongs to component j and 0, otherwise. The complete
data likelihood is given by:

p(X ,Z|Θ) =

N∏
i=1

K∏
j=1

(
p( ~Xi|ξj)pj

)Zij
(5)

We can get the complete data log-likelihood by taking the
logarithm of Eq. (5) as follows.

log p(X , Z | Θ) =

N∑
i=1

K∑
j=1

Zij log
[
p
(
~Xi | ξj

)
pj

]
(6)

where Z =
{
~Z1, . . . , ~ZN

}
. According to Eq. (6), all the D

features in the model have the same weight which can not
describe well real-world data since some of features may be
irrelevant for a some specific tasks. In order to take into ac-
count the irrelevant features, we represent them by background
Gaussian distribution with parameters ~λ = {~η, ~δ}, where ~η and
~δ represent the mean and standard deviation, respectively. We
adopt the feature relevancy approach proposed in [17] in the
case of the finite Gaussian mixture. Then, the resulting model
can be rewritten as:

p( ~Xi | Θ, ~λ, ~ϕ) =

K∑
j=1

pj

D∏
d=1

p (Xd | ξjd)ϕd p (Xd | λd)1−ϕd

(7)
where ~ϕ = (ϕ1, · · · , ϕd) is a set of binary parameters such that
if ϕd = 1 then dth feature is relevant, otherwise, ϕd = 0 for
irrelevant features. Here, ~ϕ is considered as a hidden variable,
and according to [17], we can obtain

p
(
~Xi | ΘK

)
=

K∑
j=1

pj

D∏
d=1

[ωdp (Xd | ξjd) + (1− ωd) p (Xd | λd)]

(8)
From above equation, we assume that not all the feature have
the same relevancy by assigning weights to these features, de-
noted as ~ω = (ω1, · · · , ωD), where 0 ≤ ωd ≤ 1, d = 1, . . . , D.

III. MODEL LEARNING

For the estimation of the model’s parameters, we consider
the EM algorithm where we can calculate the posterior prob-
ability as following in the E-step:

Ẑij =
pj
∏D
d=1 φijd∑K

j=1 pj
∏D
d=1 φijd

(9)

where

φijd = ωdp (Xid | ξjd) + (1− ωd) p (Xid | λd) (10)



The parameters are estimated from the maximization of log-
likelihood function, which can be written as:

L(X ,Z | Θ) =

N∑
i=1

K∑
j=1

Zij log
(
p
(
~Xi | ΘK

))

=
N∑
i=1

K∑
j=1

Zij

{
log pj + log

[
ωdp

(
~Xi | ξj

)
+ (1− ωd) p

(
~Xi | λ

)]}
(11)

In the maximization step, the parameters can be estimated
by taking the gradient of the log-likelihood in the previous
equation with respect to each parameters, which gives the
following for the mixing weights and the mean:

pnewj =

∑N
i=1 h

(
j | ~Xi,ΘM

)
N

(12)

µ
new
jd =

∑N
i=1

ωdp
(
Xid|ξjd

)
φijd

h
(
j | ~Xi,ΘM

){
Xid −

∫
∂j
f(u|ξj)

(
u−µjd

)
du∫

∂j
f(u|ξj)du

}
∑N
i=1

ωdp
(
Xid|ξjd

)
φijd

h
(
j | ~Xi,ΘM

)
(13)

Note that in Eq. (13), the term
∫
∂j
f(u|ξj)(u−µjd)du is the

expectation of function (u− µjd) under the probability distri-
bution f(Xd|ξj). Then, this expectation can be approximated
as:

∫
∂j

f(u|ξj)(u− µjd)du ≈ 1

M

M∑
m=1

(smjd − µjd)H(smjd |Ωj)

(14)

where smjd ∼ f(u|ξj) is a set of random variables drawn
from the asymmetric Gaussian distribution for the particular
component j of the mixture model. The term

∫
∂j
f(u|ξj)du in

Eq. (13) can be approximated as:

∫
∂j

f(u|ξj)du ≈ 1

M

M∑
m=1

H(smjd |Ωj) (15)

Thus, µnewjd can be written as:

µ
new
jd =∑N
i=1

ωdp
(
Xid|ξjd

)
φijd

h
(
j | ~Xi,ΘM

){
Xid −

∑M
m=1(smjd

−µjd)H(smjd
|Ωj)∑M

m=1 H(smjd
|Ωj)

}
∑N
i=1

ωdp
(
Xid|ξjd

)
φijd

h
(
j | ~Xi,ΘM

)
(16)

The left standard deviation can be estimated by maximizing
the log-likelihood function with respect to σljd , which can be
performed using Newton-Raphson method :

σnewljd = σoldljd −

[(
∂2L(X ,Z | Θ)

∂σ2
ljd

)−1(
∂L(X ,Z | Θ)

∂σljd

)]
(17)

where the first derivative of the model’s complete data log-
likelihood with respect to left standard deviation is given as
follows:

∂L(X ,Z | Θ)

∂σljd
=

N∑
Xid<µjd

ωdp (Xid | ξjd)

φijd
×

h
(
j | ~Xi, θM

) (Xid − µjd)2

σ3
ljd


−

N∑
Xid<µjd

ωdp (Xid | ξjd)

φijd × σ3
ljd

h
(
j | ~Xi, θM

)
×


∫
∂j

g1 (u | ξj) (u− µjd)2 du∫
∂j

g1 (u | ξj) du



(18)

The term
∫
∂j

g1(u|ξj)(u− µjd)2du can be approximated as
below:∫
∂j

g1(u|ξj)(u− µjd)2du ≈ 1

M

M∑
m=1

(lmjd − µjd)2H(lmjd |Ωj)

(19)

where lmjd ∼ g1(Xd|ξj) is a set of random variables drawn
from the asymmetric Gaussian distribution with u < µjd for
the particular component j of the mixture model. Similarly,
the term

∫
∂j

g1(u|ξj)du in Eq. (18) can be approximated as:∫
∂j

g1(u|ξj)du ≈ 1

M

M∑
m=1

H(lmjd |Ωj) (20)

The same approximation for the second order derivative of
the model’s complete data log-likelihood with respect to left
standard deviation is defined as follows:

∂2L(X ,Z | Θ)

∂σ2
ljd

= −3

N∑
Xid<µjd

γij

 (Xid − µjd)2

σ4
ljd



−
N∑

Xid<µjd

γij

 −2

σ3
ljd

(
σljd + σrjd

)
×


1
M

∑M
m=1

(
lmjd − µjd

)2
H
(
lmjd | Ωj

)
1
M

∑M
m=1 H

(
lmjd | Ωj

)


−
N∑

Xid<µjd

γij

σ6
ljd


1
M

∑M
m=1

(
lmjd − µjd

)4
H
(
lmjd | Ωj

)
1
M

∑M
m=1 H

(
lmjd | Ωj

)


−
N∑

Xid<µjd

−3γij

σ4
ljd


1
M

∑M
m=1

(
lmjd − µjd

)2
H
(
lmjd | Ωj

)
1
M

∑M
m=1 H

(
lmjd | Ωj

)


−
N∑

Xid<µjd

γij

σ6
ljd


(

1
M

∑M
m=1

(
lmjd − µjd

)2
H
(
lmjd | Ωj

))2

(
1
M

∑M
m=1 H

(
lmjd | Ωj

))2



(21)

where

γij =
ωdp (Xid | ξjd)

φijd
Zij (22)

Similar approximations are used for the right standard devia-
tion σnewrjd

:

σnewrjd = σoldrjd −

[(
∂2L(X ,Z | Θ)

∂σ2
rjd

)−1(
∂L(X ,Z | Θ)

∂σrjd

)]
(23)



where
∂L(X ,Z | Θ)

∂σrjd
=

N∑
i=1,Xid≥µjd

ωdp (Xid | ξjd)

φijd
×

h
(
j | ~Xi, θM

) (Xid − µjd)2

σ3
rjd


−

N∑
i=1,Xid≥µjd

ωdp (Xid | ξjd)

φijd × σ3
ljd

h
(
j | ~Xi, θM

)
×


∫
∂j

g2 (u | ξj) (u− µjd)2 du∫
∂j

g2 (u | ξj) du



(24)

The term
∫
∂j

g2(u|ξj)(u− µjd)2du can be approximated as
below:∫
∂j

g2(u|ξj)(u− µjd)2du ≈ 1

M

M∑
m=1

(rmjd − µjd)2H(rmjd |Ωj)

(25)

where rmjd ∼ g2(Xd|ξj) is a set of random variables drawn
from the asymmetric Gaussian distribution with u ≥ µjd for
the particular component j of the mixture model. Similarly,
the term

∫
∂j

g2(u|ξj)du in Eq. (24) can be approximated as:∫
∂j

g2(u|ξj)du ≈ 1

M

M∑
m=1

H(rmjd |Ωj) (26)

Similar approximations are used for ∂2L(X ,Z|Θ)
∂σ2

rjd

is given as
following:

∂2L(X ,Z | Θ)

∂σ2
rjd

= −3

N∑
Xid≥µjd

γij

 (Xid − µjd)2

σ4
rjd


−

N∑
Xid≥µjd

γij

 −2

σ3
rjd

(
σrjd + σrjd

)
×


1
M

∑M
m=1

(
rmjd − µjd

)2
H
(
rmjd | Ωj

)
1
M

∑M
m=1 H

(
rmjd | Ωj

)


−
N∑

Xid≥µjd

γij

σ6
rjd


1
M

∑M
m=1

(
rmjd − µjd

)4
H
(
rmjd | Ωj

)
1
M

∑M
m=1 H

(
rmjd | Ωj

)


−
N∑

Xid≥µjd

−3γij

σ4
rjd


1
M

∑M
m=1

(
rmjd − µjd

)2
H
(
rmjd | Ωj

)
1
M

∑M
m=1 H

(
rmjd | Ωj

)


−
N∑

Xid≥µjd

γij

σ6
rjd


(

1
M

∑M
m=1

(
rmjd − µjd

)2
H
(
rmjd | Ωj

))2

(
1
M

∑M
m=1 H

(
rmjd | Ωj

))2


(27)

The parameters of background Gaussian can be estimated
using the following equations:

ηnewd =

∑N
i=1

[∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)]]
Xid∑N

i=1

∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)
(28)

δ2
new

d =

∑N
i=1

[∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)]
(Xid − ηd)2∑N

i=1

∑M
j=1

(1−ωd)p(Xid|λd)
φijd

h
(
j | ~Xi, θM

)
(29)

ωnew
d =

∑N
i=1

∑M
j=1

ωdp(Xid|ξjd)
φijd

h
(
j | ~Xi, θM

)
N

(30)

A. Model selection via MML and complete algorithm

In order to estimate the number of components of the
mixture model, we apply MML criterion which consists of
minimizing the message length given by the following equa-
tion

MessLens ≈ − log p (ΘM ) +
c

2

(
1 + log

1

12

)
+

1

2
log |I (ΘM )| − log p (X | ΘM )

(31)

where p (ΘM ) is prior distribution, I (ΘM ) denotes the Fisher
information matrix, log p (X | ΘM ) is log-likelihood. Here the
constant value c represents the total number of parameters,
which is equal M + D + 3DM + 2D, |I (ΘM )| denotes the
determinant of the Fisher information matrix of our model
which is very hard to calculate analytically, so we assume
that each group of parameters is independent, which allows
the factorization of p (ΘM ) and I (ΘM ). Moreover, we adopt
the uninformative Jeffrey’s prior for each group of parameters
as prior distributions without knowing the parameters. Then,
we have the following equation:

MessLens ≈ c

2

(
1 + log

1

12

)
+
c

2
(logN) +

3M

2

D∑
d=1

logωd

+
3D

2

M∑
j=1

log pj +

D∑
d=1

log (1− ωd)− log p (X | θM )

(32)
The minimization of the previous equation gives the following:

p*
j =

max
(∑N

i=1 h
(
j | ~Xi,ΘM

)
− 3D

2 , 0
)

∑M
j=1 max

(∑N
i=1 h

(
j | ~Xi,ΘM

)
− 3D

2 , 0
) (33)

ω
*
d =

max
(∑N

i=1

∑M
j=1 aijd −

3M
2 , 0

)
max

(∑N
i=1

∑M
j=1 Uijd −

3M
2 , 0

)
+ max

(∑N
i=1

∑M
j=1 Vijd − 1, 0

)
(34)

where

Uijd = h
(
j | ~Xi,ΘM

) ωdp (Xid | ξjd)
φijd

(35)

Vijd = h
(
j | ~Xi,ΘM

) (1− ωd) p (Xid | λd)
φijd

(36)

The complete learning of BAGGM-FS is given in Algorithm
1, where tmin is the minimum threshold used to monitor the
log-likelihood convergence, epochmax is maximum number of
iterations, Kmin and Kmax define the searching range for the
optimal number of clusters. In the initialization step, K-Means
is used to initialize the parameters of each clusters.



Algorithm 1 Feature Selection for BAGMM

1: Input:Dataset X = { ~X1, . . . , ~XN}, tmin, epochmax, Kmin,
Kmax.

2: Output: Θ, Z , K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K-Means algorithm (Compute ~µ1, . . . , ~µK & cluster assign-

ment)
6: Set ~ω = 0.5
7: for all 1 ≤ j ≤ K do
8: Computation of pj and {~µj = ~µj , (~σlj & ~σrj )=~σj} and
~λ = {~η = ~µj , ~δ = ~σj}

9: {Expectation Maximization}:
10: while relative change in log-likelihood ≥ tmin or iterations
≤ epochmax or relative changes of parameters ≥ tmin do

11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute h

(
j | ~Xi,ΘM

)
for i = 1, . . . , N using Eq.

(9).
14: {[M step]}:
15: update bounded support range
16: for all 1 ≤ j ≤ K do
17: Estimate pj , ~µj , ~σlj & ~σrj using Eqs. (12, 16, 17, & 23).
18: end for
19: Estimate ~η, ~δ & ~ω using Eqs. (28, 29, & 30).
20: If pj = 0, jth cluster is pruned
21: If ωd = 0, p (Xid | ξjd) is pruned
22: If ωd = 1, p (Xid | λd) is pruned
23: end while
24: Compute K∗ = arg minMML(K) using Eq. (32)
25: end for

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of our model is tested on
several real-world applications, including human gender recog-
nition, human activity categorization, and human part recog-
nition. We have compared our approach (BAGMM-FS) with
bounded asymmetric Gaussian mixture model (BAGMM),
asymmetric Gaussian mixture model (AGMM), asymmetric
Gaussian mixture model with feature selection (AGMM-
FS), Gaussian mixture model (GMM), and bounded gener-
alized Gaussian mixture model (BGGMM). For comparison,
we use the following clustering metrics: accuracy, which
is computed as:

(
TP+TN

TP+TN+FP+FN

)
, precision, which is

computed as:
(

TP
TP+FP

)
, recall, which is computed as:(

TP
TP+FN

)
, F1 Score, which is computed as: 2∗ (precision∗

recall)/(precision + recall). Here, the term TP stands for
true positives, TN for true negatives, FP for false positives,
and FN stands for false negatives. In addition, we use the
silhouette score [23] which indicates the overlapping clusters
with the range from -1 to 1, and 1 is the best value, -1 for the
worst value, value near 0 indicates overlapping clusters. It is
only defined if the number of clusters is greater than 2. So if
all the data instances are assigned to one cluster, the silhouette
score is not applicable, and it will be denoted by N/A. Finally,
we consider the classification entropy (CE) index [24], which
indicates good clustering when it is low and poor clustering

when it is high.

A. Human Activity Categorization

Human activity categorization (HAR) has received a lot of
research attention in the last decade [25], [26]. It has nu-
merous practical applications such as surveillance and health
monitoring. In this section, we consider a human activity
categorization dataset called UCI Daily and Sports Activity
dataset (DSAD)1 for our experiment [27]. It contains 19
different kinds of signal data, acquired from different sensors,
of activities recorded in a flat outdoor area on campus, such as
sitting, standing, etc., performed by eight subjects (4 female,
4 male, between the ages 20 and 30). In our simulations,
firstly, eight daily activities from the first subject, including
sitting, standing, walking, jumping, playing basketball, rowing,
exercising, and running, are chosen to be classified to prove
our mixture model’s effectiveness. There are 992 observations
with 45 dimensions in 8 clusters. As we can see from the
results in the Table I, the mixture models with feature selection
outperform the other models, which demonstrates the effec-
tiveness of feature selection for high-dimensional data. GMM,
the baseline of mixture models, has the lowest accuracy. Note
that our proposed model outperforms all other models with
respect to all the calculated metrics and we have received
very high accuracy of 96.47% for this experiment. In addition,
our model has converged with fewer epochs than AGMM and
AGMM-FS under the same initialization method and learning
rate. We have also compared the MML for BAGMM-FS with
the MML for BAGMM, AGMM-FS, and AGMM in Fig. 1.
According to this figure only BAGMM and BAGMM-FS were
able to find the correct number of components which is 8,
while AGMM and AGMM-FS favored 10 clusters.

Fig. 1: MML for the activities clustering application using different mixture
models.

1DSAD dataset available at: http://archive.ics.uci.edu/ml/datasets/Daily+
and+Sports+Activities



TABLE I: 8 common daily activities, from the first subject, clustering using different mixture models.

‘

Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 3.11 3 96.47% 97.25% 96.47% 96.40% 0.451 0.004

BAGMM 3.04 1 95.56% 96.33% 95.56% 95.29% 0.454 1.49
AGMM-FS 2.67 38 96.37% 97.18% 96.37% 96.29% 0.451 0.002

AGMM 0.468 12 95.86% 96.89% 95.86% 95.75% 0.452 0.002
BGGMM 494.95 7 95.56% 96.33% 95.56% 95.30% 0.454 4.17e-7
GGMM 0.640 7 62.5% 43.81% 62.50% 50.03% 0.198 0.430
GMM 0.014 1 44.76% 36.74% 44.75% 34.83% 0.211 0.641

For another experiment with this dataset, we cluster different
sitting activities from the 8 subjects representing by 992 data
instances in total with 45 dimensions. From Table II, we
can see again that feature selection improves the clustering
results. Mixture models without feature selection have almost
the same accuracy as the baseline GMM, which is around 71%.
Note that our proposed mixture model distinguishes itself as
compared to the other mixture models with respect to all the
considered clustering metrics.

B. Gender Recognition
Gender recognition is an important task in computer vision

and has received increasing attention with the rapid develop-
ment of machine learning. There are numerous applications
that require gender recognition like human-computer inter-
action, image-based indexing and searching, biometrics, and
even targeted advertising. Some studies show that a human
can classify between a male and a female simply (over 95%
accuracy from faces [28]). However, it’s a complex task for
machines because of people’s variation status at different
light intensities, such as different postures, angles, etc [29].
Without prior information about training data, mixture models
as the unsupervised learning method can be effective for
gender recognition. In this section, we will verify BAGMM-
FS on three well-known datasets, PARSE-27k dataset 2, PETA
dataset 3 and Human attribute dataset4 [30]–[33]. Fig. 2 shows
sample images for gender recognition in PARSE-27k dataset.
Compared with other human attribute datasets, the PARSE-
27k dataset has relatively more minor variance because it only
contains crops of pedestrian bounding boxes obtained by a
pedestrian detector. For simplicity, the website of PARSE-27k
provides HDF5 file format of 64 × 128 sized crops, including
labels for quick experiments, so we did not need to crop im-
ages by ourselves. The PETA dataset consists of 19,000 images
annotated with 61 binary and 4 multi-class attributes. The
PETA dataset comprises 10 sub-datasets, including CUHK,
CAVIAR4REID, and MIT, recorded at different places with
different camera angles and viewpoints. In this experiment,
we choose the CUHK sub-dataset with resolutions of 80 ×
160, a high camera angle, and a varying viewpoint. Fig. 3
shows sample images from the PETA dataset.

2PARSE-27k dataset available at: https://www.vision.rwth-aachen.de/page/
parse27k

3PETA dataset available at: http://mmlab.ie.cuhk.edu.hk/projects/PETA.
html

4Human attribute dataset available at: https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/shape/poselets/

Fig. 2: Samples images from PARSE-27k dataset.

Fig. 3: Samples images from CUHK sub-dataset in PETA dataset

In order to describe the images, we have considered bag
of visual words (BOVW) [34]. The basic idea is to extract
local features for each image using scale invariant feature
transform (SIFT) [35]. Then, K-Means is used to cluster
the 128-dimensional descriptors for building the visual words
vocabulary, where size is equal to the number of centroids.
In short, the BOVW works by extracting features such as
shape, texture, etc., in a dense grid of rectangular windows
and constructs a fixed-size visual vocabulary by counting each
visual word’s occurrence in an image.



TABLE II: Clustering of the sitting activities of the 8 subjects using different mixture models.

‘

Mixture Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 5.87 6 90.52% 93.13% 90.52% 89.80% 0.514 0.009

BAGMM 2.23 2 72.78% 70.88% 72.78% 71.47% 0.569 0.011
AGMM-FS 0.641 9 84.97% 78.35% 84.97% 80.43% 0.593 0.156

AGMM 0.105 1 72.47% 63.37% 72.47% 65.58% 0.624 0.384
BGGMM 107.74 16 72.47% 71.41% 72.48% 71.50% 0.495 4.4e-77
GGMM 0.237 3 72.47% 63.37% 72.47% 65.58% 0.624 0.384
GMM 0.015 1 71.67% 59.87% 71.67% 63.67% 0.556 0.383

Regarding the PARSE-27k experiment, we selected 2,000
images, composed of 1,000 female photos and 1,000 male pho-
tos, by considering a visual vocabulary having a size of 110.
Besides, the distribution of clusters is so imbalanced which
makes the clustering task very challenging. The clustering
results using different mixtures are summarized in Table III
and show clearly that our model outperformed all the others.
For another gender recognition experiment, we choose 346
images (200 for males and 146 females) from the CUHK
folder in the PETA dataset. We also employ SIFT and BOVW
approach to extract feature vectors from these images. We
considered a vocabulary with a size of 130 after many tries.
The clustering results for this data set are given in Table III and
we can see again that our model has an excellent performance
as compared to the other models.

We have also considered a challenging dataset called Human
attribute dataset [32], [33]. The Human attribute dataset of
H3D folder comprises 750 images in total (437 for male
images, 313 for female images) in which there are nine
attributes and visible bounding boxes of person for each image.
The attribute value is 1 if it is present, -1 if it is not, and 0 if
it is unspecified which we have not considered nor use in our
experiments. The same feature extraction process used above
is also considered for this data set.

Fig. 4: Samples images from human attribute dataset.

This dataset is different from the datasets mentioned above
because of its complex and colorful backgrounds. We ran-
domly picked up 313 images (half males and half females).
After feature extraction, we considered a vocabulary of size

100. It’s observed that our proposed model performs better
than the other mixture models, as shown in Table III. In
particular, we can observe that several silhouette score values
are N/A, which means that the associated models failed
to distinguish both classes. Our proposed BAGMM-FS has
the highest accuracy of 70.61% as compared with BAGMM
with 62.77% accuracy and fewer iterations as compared with
AGMM-FS because of bounded support. Note that feature
selection can help mixture models converge faster observed
from the execution time of AGMM and AGMM-FS.

V. CONCLUSION

We propose a statistical framework for simultaneous clus-
tering and feature selection based on BAGMM. The proposed
statistical model is learned using the EM algorithm to estimate
the mixture’s parameters and select the number of clusters by
MML. In contrast with other dimension reduction approaches,
our proposed algorithm uses the full dimensionality of the
data and gives a weight to each feature automatically. Us-
ing two applications that involve human activity and gender
recognition, we have shown that the proposed model outper-
forms other mixture models considered for comparison. It
is demonstrated through several performance measures. For
two experiments on human activity recognition, our model
has achieved a very high accuracy of 96.47% and 90.52%,
demonstrating the proposed algorithm’s effectiveness. Future
works could be devoted to applying the proposed framework
to other challenging applications or considering other learning
techniques such as Bayesian inference or variational Bayes.
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