
Model Selection Criterion for Multivariate Bounded
Asymmetric Gaussian Mixture Model

Zixiang Xian1, Muhammad Azam1, Manar Amayri1,2, Nizar Bouguila1

1Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada
2Grenoble Institute of Technology, Grenoble, France

zi xian@encs.concordia.ca, mu azam@encs.concordia.ca, manar.amayri@grenoble-inp.fr, nizar.bouguila@concordia.ca

Abstract—In this paper, model selection criterion for bounded
support asymmetric Gaussian mixture model (BAGMM) using
minimum message length (MML) is proposed. The proposed ap-
proach is validated using synthetic data, real data and occupancy
detection application. The proposed approach is compared with
other state of the art model selection approaches. Moreover,
the developed bounded mixture is compared with asymmetric
Gaussian mixture model (AGMM).

Index Terms—Multivariate Bounded Asymmetric Gaussian
Mixture Model (BAGMM), Minimum Message Length (MML),
Model Selection, Data Clustering, Occupancy Detection

I. INTRODUCTION

Finite mixture models are widely used in different applica-
tions for pattern recognition, statistical inference, data mining
and information retrieval. In particular, Gaussian mixture
model (GMM) is a well-known approach widely used in
many applications. Expectation Maximization (EM) algorithm
is utilized to estimate the parameters of mixture model by
maximizing the log-likelihood function efficiently [1]–[3].
However, Gaussian distribution is symmetric in nature and
sensitive to outliers. Because in real life, data can be asym-
metric, and in order to improve the robustness of clustering
and enhance the modeling capabilities for asymmetric datasets,
the asymmetric Gaussian mixture model (AGMM) has been
proposed in [4]. On the other hand, the mixture of generalized
Gaussian distribution (GGD) was proposed to overcome the
drawback of GMM’s rigidity of its shape [5], [6] and has
been applied to many real applications [7].

In many real applications, data lie in a bounded support
range, whereas algorithms to model these datasets have an
unbounded support range. The idea of bounded support mix-
tures was proposed due to bounded nature of data in many
applications and bounded support Gaussian mixture model
(BGMM) was developed in [8]–[10] to better model real-world
data. Several bounded support mixtures have been proposed
so far to improve clustering [11], [12]. Bounded asymmetric
Gaussian mixture model (BAGMM) has been proposed in [13]
and successfully applied to several applications.

Unfortunately the research work in [13] does no involve an
automatic approach to determine the optimal number of clus-
ters. In general, there are many ways to achieve this by either
deterministic or stochastic way. The general stochastic way
uses Markov Chain Monte Carlo (MCMC) methods to either
implement the model selection criteria [14] or approximate

the posterior distribution to find the optimal clusters. In this
paper, we want to focus on deterministic approaches for which
several techniques have been proposed including Akaike’s
information criterion (AIC) [15], the Schwarz’s Bayesian
information criterion (BIC) [16], Consistent AIC (CAIC) [17],
minimum description length (MDL) [18], the mixture mini-
mum description length (MMDL) [19], the Laplace empirical
criterion (LEC) [20] and minimum message length (MML)
[4], [5]. Model selection using MML has outperformed the
AIC and MDL criteria in several studies [21], [22].

This paper proposes model selection using MML for the
BAGMM and compares it with other model selection criteria.
The experiments are conducted on several synthetic and real
datasets, including an application to occupancy detection.
The clustering performance is compared with AGMM after
determining the optimal number of clusters.

The rest of the paper is organized as follows: Section II
presents the bounded asymmetric Gaussian mixture briefly.
The proposed model selection criterion using MML is de-
scribed in the Section III, including complete model learning.
The experiments and results are presented in in Section IV and
Section V is dedicated to conclusions and future perspectives.

II. PROPOSED MODEL

A. Mixture of Bounded Asymmetric Gaussian Distributions
Given a D-dimensional random variable ~X = (X1, ..., XD),

that follows K components mixture distribution, then:

p( ~X|Θ) =
K∑
j=1

p( ~X|ξj)pj (1)

provided pj ≥ 0,
∑K
j=1 pj = 1, Θ = (ξ1, ξ2, ξ3, ξ4) with

ξ1 = (~µ1, ..., ~µK), ξ2 = (~σl1 , ..., ~σlK ), ξ3 = (~σr1 , ..., ~σrK )
and ξ4 = (p1, ..., pK). The term p( ~X|ξj) is the PDF of the
bounded asymmetric Gaussian distribution (BAGD) for vector
~X and defined as:

p( ~X|ξj) =
f( ~X|ξj)H( ~X|Ωj)∫

∂j
f(~u|ξj)du

,where H( ~X|Ωj) =

{
1 if ~X ∈ ∂j
0 otherwise

(2)

f( ~X|ξj) =

D∏
d=1

2
√

2π(σljd + σrjd )
×


exp

[
−

(Xd−µjd)2

2σ2
ljd

]
if Xd < µjd

exp

[
−

(Xd−µjd)2

2σ2
rjd

]
if Xd ≥ µjd

(3)
where ~µj = (µj1, ..., µjD), ~σlj = (σlj1 , ..., σljD ), and ~σrj =
(σrj1 , ..., σrjD ) are the mean, left standard deviation and right
standard deviation of the D-dimensional BAGD, respectively.



The term
∫
∂j
f(~u|ξj)du in Eq. (2) is the normalization constant

that indicates the share of f( ~X|ξj) which belongs to the
support region ∂. We introduce stochastic indicator vectors
~Zi = (Zi1, ..., ZiK), one for each observation. The role is
to encode the membership of each observation for a relative
component of the mixture model. In other words, Zij , the
hidden variable in each indicator vector, equals 1 if ~Xi belongs
to class j and 0, otherwise. The complete data likelihood is
given below:

p(X ,Z|Θ) =

N∏
i=1

K∏
j=1

(
p( ~Xi|ξj)pj

)Zij
(4)

where Zij is the posterior probability and can be written as:

Zij = p(j| ~Xi) =
p( ~Xi|ξj)pj∑K
j=1 p(

~Xi|ξj)pj
and Z = {~Z1, ..., ~ZN}. (5)

The parameters are estimated using EM algorithm, which is
adopted from [13].

III. MODEL SELECTION USING MINIMUM MESSAGE
LENGTH (MML) CRITERION

The general form of MML equation, which we should
minimize to obtain the optimal number of clusters in the
mixture, is as follows:

Mess Len(K)'− log(p(ΘK))−L(ΘK,Z,X)+
1

2
log|F (ΘK)|+

Np

2
(1+log(

1

12
)) (6)

where Np is number of parameters (equal to K(3D+1)), ΘK

is set of parameters when mixture contains K components,
p(ΘK) is prior probability,L(ΘK,Z,X)is log-likelihood of mix-
ture model and |F (ΘK)| is determinant of Fisher information
matrix. The estimation of number of classes is carried out by
finding minimum with respect to Θ of message length [4], [5].
The derivation of p(ΘK) and |F (ΘK)| is given in following
subsections.

A. Derivation of the prior p(Θ)

we assume that all the parameters of the mixture model
are mutually independent, then the prior distribution over the
parameters, π, µ, σl and σr, is :

p(Θ) = p(π)p(µ)p(σl)p(σr) (7)

where π = (p1, ..., pK). Each parameter is independent, so
each prior distribution is defined separately. Beginning with
p(π), we know that vector π is defined on the simplex
as {(p1, ..., pK) :

∑K
j=1 pj = 1}. In general, the Dirichlet

distribution is a natural choice as a prior for vector π, which
is defined as:

p(π) =
Γ(
∑K
j=1 ηj)∑K

j=1 Γ(ηj)

K∑
j=1

pj
ηj
−1

(8)

where (η1, ..., ηK) is the parameters vector of Dirichlet dis-
tribution. By choosing, η1 = 1, ..., ηK = 1, we get a uniform
prior over space p1 + ... + pK = 1, which is represented as:
p(π) = (K − 1)!. For each µjd, uniform prior is chosen.
Each µjd is chosen to be uniform in the region (µjd − σld ≤
µjd ≤ µjd + σrd), then prior for µj is given by the following
equations:

p(µjd) =
1

σld + σrd
=⇒ p(~µj) =

D∏
d=1

1

σld + σrd
(9)

p(µ) =

K∏
j=1

D∏
d=1

1

σld + σrd
=

D∏
d=1

1

(σld + σrd)K
(10)

For the parameter σl and σr, we have:

p(σl) =

K∏
j=1

p(~σlj ), p(σr) =

K∏
j=1

p(~σrj ) (11)

where different components of vectors ~σlj and ~σrj are assumed
to be independent. The principle of ignorance is adopted due
to the absence of other knowledge about σljd and σrjd , by
taking from a uniform prior. The ~µ = (µ1, ..., µD), ~σl =
(σl1 , ..., σlD ) and ~σr = (σr1 , ..., σrD ) are mean, left standard
deviation and right standard deviation vectors of whole dataset,
respectively. And for each σljd and σrjd , following uniform
prior will be used:

p(σljd ) =
1

σld
, p(σrjd ) =

1

σrd
(12)

where 0 ≤ σljd ≤ σld and 0 ≤ σrjd ≤ σrd . It follows that

p(~σlj ) =
D∏
d=1

1

σld
, p(~σrj ) =

D∏
d=1

1

σrd
(13)

From Eqs. (11 & 13), we obtain:

p(σl)=
K∏
j=1

D∏
d=1

1

σld
=
D∏
d=1

1

σld
K
, p(σr)=

K∏
j=1

D∏
d=1

1

σrd
=
D∏
d=1

1

σrd
K

(14)

Finally, by replacing the priors of parameters in Eq. (7) by
Eqs. (10 & 14), we get:

p(Θ) = (M − 1)!

D∏
d=1

1

σld
Kσrd

K(σld + σrd)K
(15)

B. Derivation of the Fisher information matrix |F (Θ)|
In general, the Fisher information matrix is the expected

value of the Hessian matrix minus the log-likelihood. But
in practice, it is intractable to compute the expected Fisher
information matrix. So we utilize the complete-data Fisher
information matrix to approximate the Hessian matrix, which
is the product of the information matrix’s determinant for each
cluster times the information matrix of the mixing weight as
in Eq. ( 16).

|F (Θ)| = |F (π)||F (µ)||F (σl)||F (σr)| (16)

|F (π)| =
NK−1∑K
j=1 pj

, F (~µj)k1,k2
=
∂2L(Θ, Z,Xj)
∂µjk1

∂µjk2

(17)

F (~σlj )k1,k2
=
∂2L(Θ, Z,Xj)
∂σljk1

∂σljk2

, F (~σrj )k1,k2
=
∂2L(Θ, Z,Xj)
∂σrjk1

∂σrjk2

(18)

|F (µ)| =
K∏
j

D∏
d=1

∣∣∣∣
l+nj−1∑

i=l,Xid<µjd

 −1

σ2
ljd

 +

l+nj−1∑
i=l,Xid≥µjd

 −1

σ2
rjd

 (19)

−
l+nj−1∑

i=l,xd<µjd

1

σ4
ljd

×
{
−

(
1
M

∑M
m=1(lmjd − µjd)H(lmjd |Ωj)

)2
(

1
M

∑M
m=1 H(lmjd |Ωj)

)2
+

1
M

∑M
m=1

{
(lmjd − µjd)2 − 1

}
H(lmjd |Ωj)

1
M

∑M
m=1 H(lmjd |Ωj)

}

−
l+nj−1∑

i=l,Xid≥µjd

1

σ4
rjd

×
{
−

(
1
M

∑M
m=1(rmjd − µjd)H(rmjd |Ωj)

)2
(

1
M

∑M
m=1 H(rmjd |Ωj)

)2
+

1
M

∑M
m=1

{
(rmjd − µjd)2 − 1

}
H(rmjd |Ωj)

1
M

∑M
m=1 H(rmjd |Ωj)
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|F (σl)| =
K∏
j

D∏
d=1

∣∣∣∣−3

l+nj−1∑
i=l,Xid<µjd

 (Xid − µjd)2

σ4
ljd



−
l+nj−1∑

i=l,Xid<µjd

 −2

σ3
ljd

(σljd
+ σrjd

)




1
M

∑M
m=1(lmjd − µjd)2H(lmjd |Ωj)

1
M
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m=1 H(lmjd |Ωj)


−

l+nj−1∑
i=1,Xid<µjd

1

σ6
ljd


1
M

∑M
m=1(lmjd − µjd)4H(lmjd |Ωj)

1
M

∑M
m=1 H(lmjd |Ωj)


−

l+nj−1∑
i=l,Xid<µjd

−3

σ4
ljd


1
M

∑M
m=1(lmjd − µjd)2H(lmjd |Ωj)

1
M

∑M
m=1 H(lmjd |Ωj)


−

l+nj−1∑
i=l,Xid<µjd

1

σ6
ljd


(

1
M

∑M
m=1(lmjd − µjd)2H(lmjd |Ωj)

)2
( 1
M

∑M
m=1 H(lmjd |Ωj))2


∣∣∣∣

(20)

|F (σr)| =
K∏
j

D∏
d=1

∣∣∣∣−3

l+nj−1∑
i=l,Xid≥µjd

 (Xid − µjd)2

σ4
rjd



−
l+nj−1∑

i=l,Xid≥µjd

 −2

σ3
rjd

(σljd
+ σrjd
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1
M

∑M
m=1(rmjd − µjd)2H(rmjd |Ωj)

1
M

∑M
m=1 H(rmjd |Ωj)


−

l+nj−1∑
i=l,Xid≥µjd

1

σ6
rjd


1
M

∑M
m=1(rmjd − µjd)4H(rmjd |Ωj)

1
M

∑M
m=1 H(rmjd |Ωj)


−

l+nj−1∑
i=l,Xid≥µjd

−3

σ4
rjd


1
M

∑M
m=1(rmjd − µjd)2H(rmjd |Ωj)

1
M

∑M
m=1 H(rmjd |Ωj)


−

l+nj−1∑
i=l,Xid≥µjd

1

σ6
rjd


(

1
M

∑M
m=1(rmjd − µjd)2H(rmjd |Ωj)

)2
( 1
M

∑M
m=1 H(rmjd |Ωj))2


∣∣∣∣

(21)

where lmjd is a set of random variables drawn from the
asymmetric Gaussian distribution (AGD) with the constraint,
u < µjd for the particular component j of the mixture model.
These random variables have M vectors with D dimensions.
M is a large integer chosen to generate the set of random
variables, for example 2,000 draws in this paper. Similarly,
rmjd is the random variables drawn from the AGD with
constraint, u ≥ µjd for the particular component j of the
mixture model.

C. Complete learning algorithm for BAGMM with MML

In this section, we summarize the model learning algorithm
for the bounded AGMM and the model selection. we apply
K-Means to initialize parameters, then use the EM algorithm
to estimate the mixture parameters. During each iteration,
we need to update bounded support range. Note that we
initialize both left and right standard deviations with the
standard deviation values obtained from each cluster by K-
means. Finally, we need to set up the predefined threshold tmin
for the log-likelihood between the two successive iterations, j
and j+1, and a certain number of iterations, epochmax. Once
the log-likelihood difference is smaller than the preset point,
the EM will converge, or it will stop after specific number of
iterations to avoid the infinity loop, or it will stop when the
parameters don’t change any more.

After using the EM algorithm to learn the model parameters,
we calculate the associated criterion MML using Eq. (6).
Finally, select the optimal number of cluster K∗ such that
K∗ = arg minMML(K). The complete learning procedure
for BAGMM with MML is given in Algorithm 1.

Algorithm 1 Model Learning for BAGMM
1: Input:Dataset X = { ~X1, . . . , ~XN}, tmin, Kmin, Kmax.
2: Output: Θ, Z , K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K-Means (Compute ~µ1, . . . , ~µK & cluster assignment)
6: for all 1 ≤ j ≤ K do
7: Computation of pj and {(~σlj & ~σrj )=~σj}
8: {Expectation Maximization}:
9: while relative change in log-likelihood ≥ tmin or iterations ≤ epochmax or

relative changes of parameters ≥ tmin do
10: {[E Step]}:
11: for all 1 ≤ j ≤ K do
12: Compute p(j| ~Xi) for i = 1, . . . , N .
13: {[M step]}:
14: update bounded support range
15: for all 1 ≤ j ≤ K do
16: Estimate pj , ~µj , ~σlj & ~σrj
17: end while
18: Compute K∗ = arg minMML(K)
19: end for

IV. EXPERIMENTAL RESULTS

A. Comparison with other model selection criteria

The model selection criteria selected to compare with
MML, include MDL [18], AIC [15], Bayesian inference cri-
terion (BIC) [16], consistent AIC (CAIC) [17], mixture MDL
(MMDL) [19], MMLlike [23], LEC [24], [25]. The details of
these algorithms is given in [26].

B. Synthetic Datasets

We compared different model selection criteria when de-
ploying BAGMM and AGMM with 2-dimensional synthetic
datasets, sampled from the asymmetric Gaussian distribution
having 2, 3, 4 and 5 clusters. The parameters of each cluster
of synthetic dataset are given in Table I and each cluster
has 2,000 data instances. The MML criterion along with EM
algorithm of BAGMM is applied to determine the optimal
number of clusters in each dataset. The clustering accuracy is
also determined after finding the correct number of mixture
components and results are compared with other model selec-
tion criteria and AGMM. The comparison between the AGMM
and BAGMM for all the model selection criteria is provided
in Table I, which demonstrates that all model selection criteria
including MML for BAGMM have correctly determined the
number of clusters. However, model selections criteria for
AGMM, provide wrong number of clusters in each case.
Table II shows the execution time and accuracy of BAGMM
and AGMM under this synthetic dataset. Note that BAGMM
always has high clustering accuracy as compared to AGMM,
which indicates the clustering capabilty of BAGMM.

All experiments are running on a Macbook Pro 2015 with
Dual-Core Intel Core i5 CPU. The BAGMM is as relatively
fast as the AGMM for 5 clusters or more, but in the case
of less than 5 clusters, the AGMM is a little bit faster. The
BAGMM always converges faster than the AGMM with less
iterations.

C. Real Datasets

We have adopted 10 standard multidimensional datasets
to validate the proposed model with real datasets, which



TABLE I: The model selection and clustering results for synthetic dataset

‘

Synthetic Dataset(2,000 instances in each cluster)
clusters µ, σl, σr AIC BIC CAIC MDL MMDL MML like LEC MML

(2, -4) , (2, 3) , (1, 5)
2 (5, 4), (3, 6), (2.1, 3.8) 2 2 2 2 2 2 2 2

(2, -4), (2, 3), (1, 5)
3 (5, 4), (3, 6), (2.1, 3.8) 3 3 3 3 3 3 3 3

(-10, 12), (3, 3.7), (3.4, 5.9)
(2, -4), (2, 3), (1, 5)

4 (5, 4), (3, 6), (2.1, 3.8) 4 4 4 4 4 4 4 4
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(2, -4), (2, 3), (1, 5)

5 (5, 4), (3, 6), (2.1, 3.8) 5 5 5 5 5 5 5 5
(-10, 12), (3, 3.7), (3.4, 5.9)

(-13, 14), (1, 2.1), (3, 3)
(-15, 16.6),(3.3, 4.4), (2.8, 2.7)

TABLE II: Execution information of MML on synthetic dataset

‘

Execution information on synthetic dataset(seconds)
Mixture Models Clusters Time Accuracy Iterations

BAGMM 2 clusters 2.35 71.3% 5
BAGMM 3 clusters 8.60 85.7% 2
BAGMM 4 clusters 12.09 72.2% 4
BAGMM 5 clusters 12.58 65.7% 5

include Indian Liver Patient, Iris, Vertebral Column, Wine
Quality (red), Spect Heart, Cryotherapy, Immunotherapy, Stat-
log (Heart), Parkinsons and Haberman Survival. They are
from the machine learning repository at the University of
California, Irvine [27]. They all differ in the number of
instances, dimensions, clusters, and complexity.

The model selection using MML for BAGMM is applied on
all datasets to determine the optimal number of clusters in the
datasets along with comparison models and similar settings for
AGMM. The description of these datasets and model selection
results are presented in the Table III. It is evident from the
results that MML and LEC have successfully determined the
correct number of clusters in all cases with BAGMM. In the
case of AGMM, MML and LEC also have a high probability
of determining the correct number of clusters, however the
performance with BAGMM is more accurate. The equation
of MML is almost the same as the LEC, containing both
prior distribution and the Fisher information matrix, which
outperforms other model selection criteria.

D. Occupancy Detection and Model Selection

Occupancy detection is widely used in smart buildings and
it helps in energy efficiency, improves thermal comfort and re-
duces carbon footprints. This section compares several model
selection methods with MML using AGMM and BAGMM on
an occupancy dataset. The dataset [28] is composed of 9752
instances, 5 dimensions and 2 clusters, as shown in the Table
IV. In this application, we need to detect room occupancy as a
binary classification from CO2, light, Humidity, temperature,
and humidity ratio, which were taken every minute. Compared

TABLE III: The model selection results for real dataset

Real Dataset
dataset N DK AIC BIC CAIC MDL MMDL MML like LEC MML

Indian Liver Patient(AGMM) 583 10 2 4 2 2 2 4 4 2 2
Indian Liver Patient(BAGMM) 2 2 2 2 2 2 2 2

Iris(AGMM) 150 4 3 6 3 3 3 3 6 6 6
Iris(BAGMM) 6 6 6 6 6 6 3 3

Vertebral(AGMM) 310 6 3 3 3 3 3 3 3 3 3
Vertebral(BAGMM) 5 3 3 3 5 5 3 3

Wine Quality(red)(AGMM) 1599 11 6 5 5 5 5 5 5 6 6
Wine Quality(red)(BAGMM) 8 8 8 8 8 8 6 6

Spect Heart(AGMM) 80 44 2 6 4 2 4 4 6 2 2
Spect Heart(BAGMM) 5 2 2 2 5 5 2 2
Cryotherapy(AGMM) 90 6 2 2 2 2 2 2 2 2 2

Cryotherapy(BAGMM) 6 2 2 2 6 6 2 2
Immunotherapy(AGMM) 90 7 2 3 2 2 2 3 3 2 2

Immunotherapy(BAGMM) 2 2 2 2 2 2 2 2
Statlog(Heart)(AGMM) 270 13 2 6 6 2 6 6 6 6 6

Statlog(Heart)(BAGMM) 2 2 2 2 2 2 2 2
Parkinsons(AGMM) 197 22 2 6 6 6 6 6 6 6 6

Parkinsons(BAGMM) 2 2 2 2 2 2 2 2
Haberman Survival(AGMM) 306 3 2 2 2 2 2 2 2 2 2

Haberman Survival(BAGMM) 2 2 2 2 2 2 2 2

with 79% accuracy in AGMM, the BAGMM has shown better
performance with 94.8% accuracy, because the attributes are
all environmental data with a specific bounded range. It takes
the BAGMM 3.66 seconds to converge within 6 epochs, while
2.04 seconds for the AGMM with 51 iterations. Figure. 1
displays the results of different model selection criteria. The
hollow black circle in each graph indicates the minimum value
on the y-axis and the optimal number of clusters on the x-axis.
For model selection, we can conclude BAGMM with MML
and other criteria has better performance in finding the number
of clusters, since all model selection methods with AGMM
have shown 5 as the optimal number of clusters, while the
ground truth is 2.

TABLE IV: Occupancy estimation and model selection results

‘
Models N DK AIC BIC CAIC MDL MMDL MML like LEC MML Acc
AGMM 9752 5 2 5 5 5 5 5 5 5 5 79%

BAGMM 2 2 2 2 2 2 2 2 94.8%

V. CONCLUSION

This paper discusses the clustering using BAGMM and
proposes the MML as model selection criterion to determine
the optimal number of clusters. Bounded support mixture has
demonstrated its success in many clustering applications and
finding the optimal number of clusters is significant in a
clustering task. The proposed model is applied to synthetic
datasets, real datasets and an application is developed for
occupancy detection. The results demonstrate that MML out-
performs the other model selection criteria. High accuracy
of 94.8% is achieved for occupancy detection and MML
has successfully determined the correct number of clusters.
From all the experimental results, it is observed that the
BAGMM and the MML provide strong modeling ability for
high-dimensional and complex datasets.
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