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Asymmetric Gaussian Distribution

� Gaussian distribution (GD) assumes that the data is symmetric and
has an infinite range, which prevents it from having a good
modeling capability in the presence of outliers.

� Asymmetric Gaussian distribution (AGD) has been proposed to
model asymmetric real-world data by having two variance
parameters controlling the left and right parts of the distribution.
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Proposed Model

Mixture of Asymmetric Gaussian Distributions (AGMM)

AGMM

p Zi

Xiµ

σl

σr
N

Graphical representation of an
asymmetric Gaussian mixture model

Mathmatical Definition

p(X ,Z|Θ) =
N∏
i=1

K∏
j=1

(
p(~Xi |ξj )pj

)Zij
(1)

p
(
~Xi |ξj

)
is the PDF of AGD

Zij is the hidden variable which
satisfy Zij ∈ {0, 1}
pj are the mixing weights that
satisfy pj ≥ 0,

∑K
j=1 pj = 1.
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Mixture of Bounded Asymmetric Gaussian Distributions

p(~X |ξj ) =
f (~X |ξj )H(~X |Ωj )∫
∂j

f (~u|ξj )du
,where H(~X |Ωj ) =

{
1 if ~X ∈ ∂j
0 otherwise

(2)

f (~X |ξj ) =
D∏

d=1

2
√
2π(σljd + σrjd )


exp

[
− (Xd−µjd )2

2σ2
ljd

]
if Xd < µjd

exp

[
− (Xd−µjd )2

2σ2
rjd

]
if Xd ≥ µjd

(3)

where ξj = (~µj , ~σlj , ~σrj ) represents the parameters of AGD. Here,
~µj = (µj1, ..., µjD), ~σlj = (σlj1 , ..., σljD ), and ~σrj = (σrj1 , ..., σrjD ) are the
mean, left standard deviation and right standard deviation of the
D-dimensional AGD, respectively. f (~X |ξj) is the PDF of AGD.

the term
∫
∂j
f (~u|ξj)du in Eq. (2) is the normalized constant that shows

the share of f (~X |ξj) which belongs to the support region ∂.
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Feature Selection

Feature Selection

We can get the complete data log-likelihood by taking the
logarithm of Eq. (1) as follows.

log p(X ,Z | Θ) =
N∑
i=1

K∑
j=1

Zij log
[
p
(
~Xi | ξj

)
pj

]
(4)

According to Eq. (4), all the D features in the model have the
same weight which can not describe well real-world data since
some of features may be irrelevant for a some specific tasks. In
order to take into account the irrelevant features, we represent
them by background Gaussian distribution with parameters
~λ = {~η, ~δ}, where ~η and ~δ represent the mean and standard
deviation, respectively.
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Feature Selection

Feature Selection

p(~Xi | Θ, ~λ, ~ϕ) =
K∑
j=1

pj

D∏
d=1

p (Xd | ξjd)ϕd p (Xd | λd)1−ϕd (5)

where ~ϕ = (ϕ1, · · · , ϕd ) is a set of binary parameters such that if ϕd = 1 then dth
feature is relevant, otherwise, ϕd = 0 for irrelevant features. Here, ~ϕ is considered as
a hidden variable

According to [1], we can obtain:

p
(
~Xi | ΘK

)
=

K∑
j=1

pj

D∏
d=1

[ωdp (Xd | ξjd) + (1− ωd) p (Xd | λd)] (6)

Where p (Xd | λd ) is the background Gaussian distribution with parameters ~λ = {~η, ~δ}.
We assume that not all the feature have the same relevancy by assigning weights to
these features, denoted as ~ω = (ω1, · · · , ωD), where 0 ≤ ωd ≤ 1, d = 1, . . . ,D.
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E Step

E Step

For the estimation of the model’s parameters, we consider the EM
algorithm where we can calculate the posterior probability as
following in the E-step:

Ẑij =
pj
∏D

d=1 φijd∑K
j=1 pj

∏D
d=1 φijd

(7)

where
φijd = ωdp (Xid | ξjd) + (1− ωd) p (Xid | λd) (8)
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M Step

Mixing Parameter Estimation

The log-likelihood function can be written as:

L(X ,Z | Θ) =
N∑
i=1

K∑
j=1

Zij log
(
p
(
~Xi | ΘK

))

=
N∑
i=1

K∑
j=1

Zij

{
log pj + log

[
ωdp

(
~Xi | ξj

)
+ (1− ωd) p

(
~Xi | λ

)]} (9)

In M-step, the parameters can be estimated by taking the gradient
of the log-likelihood in the previous equation with respect to each
parameters, which gives the following for the mixing weights and
the mean:

Estimation of p

pnewj =

∑N
i=1 h

(
j | ~Xi ,ΘM

)
N

(10)
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M Step

Mean Parameter Estimation

Estimation of µ

µnew
jd =

∑N
i=1

ωdp(Xid |ξjd )
φijd

h
(
j | ~Xi ,ΘM

){
Xid −

∫
∂j

f (u|ξj )(u−µjd )du∫
∂j

f (u|ξj )du

}
∑N

i=1
ωdp(Xid |ξjd )

φijd
h
(
j | ~Xi ,ΘM

) (11)

In Eq. (11), the term
∫
∂j
f (u|ξj)(u− µjd)du is the expectation of

function (u− µjd) under the probability distribution f (Xd |ξj). Then, this
expectation can be approximated as:

∫
∂j

f (u|ξj )(u− µjd )du ≈
1
M

M∑
m=1

(smjd − µjd )H(smjd |Ωj ) (12)

where smjd
∼ f (u|ξj) is a set of random variables drawn from the

asymmetric Gaussian distribution for the particular component j of the
mixture model.
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M Step

Left And Right Standard Deviation Estimation

The left and right standard deviation can be estimated by
maximizing the log-likelihood function with respect to σljd and σrjd ,
which can be performed using Newton-Raphson method:

Estimation of σl and σr

σnew
ljd = σold

ljd −

(∂2L(X ,Z | Θ)

∂σ2
ljd

)−1(
∂L(X ,Z | Θ)

∂σljd

) (13)

σnew
rjd = σold

rjd −

(∂2L(X ,Z | Θ)

∂σ2
rjd

)−1(
∂L(X ,Z | Θ)

∂σrjd

) (14)

The details are covered in the paper.
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M Step

Parameters of Background Gaussian Estimation

The parameters of background Gaussian can be estimated using the
following equations:

ηnewd =

∑N
i=1

[∑M
j=1

(1−ωd )p(Xid |λd )
φijd

h
(
j | ~Xi , θM

)]]
Xid∑N

i=1
∑M

j=1
(1−ωd )p(Xid |λd )

φijd
h
(
j | ~Xi , θM

) (15)

δ2
new

d =

∑N
i=1

[∑M
j=1

(1−ωd )p(Xid |λd )
φijd

h
(
j | ~Xi , θM

)]
(Xid − ηd)2∑N

i=1
∑M

j=1
(1−ωd )p(Xid |λd )

φijd
h
(
j | ~Xi , θM

) (16)

ωnew
d =

∑N
i=1
∑M

j=1
ωdp(Xid |ξjd)

φijd
h
(
j | ~Xi , θM

)
N

(17)



Proposed Model Model Learning Experimental Results Conclusion

Model selection via MML

Model selection criteria
EM algorithm requires an appropriate number of clusters found by
model selection criteria.

stochastic (e.g. Markov Chain Monte Carlo)
deterministic approaches including Akaike’s information
criterion (AIC) [2], Schwarz’s Bayesian information criterion
(BIC) [3], the Laplace empirical criterion (LEC) [4] and
minimum message length (MML) [1, 5], et
re-sampling methods

The MML has been shown to have better performance among most
model selection criteria in most cases.
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Model selection via MML

Minimum Message Length

MML

MessLens ≈ − log p (ΘM) +
c

2

(
1 + log

1
12

)
+

1
2

log |I (ΘM)| − log p (X | ΘM)

(18)

� p (ΘM) is prior distribution.

� I (ΘM) denotes the Fisher information matrix.

� log p (X | ΘM) is log-likelihood.

� c represents the total number of parameters, which is equal
M + D + 3DM + 2D

� |I (ΘM)| denotes the determinant of the Fisher information matrix.
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Model selection via MML

Minimum Message Length

We assume that each group of parameters is independent, which
allows the factorization of p (ΘM) and I (ΘM).
Moreover, we adopt the uninformative Jeffrey’s prior for each group
of parameters as prior distributions without knowing the
parameters.

MML can be rewritten as

MessLens ≈ c

2

(
1 + log

1
12

)
+

c

2
(logN) +

3M
2

D∑
d=1

logωd

+
3D
2

M∑
j=1

log pj +
D∑

d=1

log (1− ωd)− log p (X | θM)

(19)
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Model selection via MML

Minimum Message Length

The minimization of the Eq. (19) gives the following:

p*j =
max

(∑N
i=1 h

(
j | ~Xi ,ΘM

)
− 3D

2 , 0
)

∑M
j=1 max

(∑N
i=1 h

(
j | ~Xi ,ΘM

)
− 3D

2 , 0
) (20)

ω*d =
max

(∑N
i=1
∑M

j=1 aijd −
3M
2 , 0

)
max

(∑N
i=1
∑M

j=1 Uijd − 3M
2 , 0

)
+ max

(∑N
i=1
∑M

j=1 Vijd − 1, 0
) (21)

where

Uijd = h
(
j | ~Xi ,ΘM

) ωdp (Xid | ξjd)

φijd
(22)

Vijd = h
(
j | ~Xi ,ΘM

) (1− ωd) p (Xid | λd)

φijd
(23)
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Model selection via MML

Algorithm 1 Feature Selection for BAGMM
1: Input:Dataset X = {~X1, . . . , ~XN}, tmin, epochmax , Kmin, Kmax .
2: Output: Θ, Z, K∗.
3: for Kmin ≤ K ≤ Kmax do
4: {Initialization}:
5: K -Means algorithm (Compute ~µ1, . . . , ~µK & cluster assignment & ~ω = 0.5)
6: for all 1 ≤ j ≤ K do
7: Computation of pj and {~µj = ~µj , (~σlj & ~σrj )=~σj} and ~λ = {~η = ~µj , ~δ = ~σj}
8: {Expectation Maximization}:
9: while relative change in log-likelihood ≥ tmin or iterations ≤ epochmax or relative

changes of parameters ≥ tmin do
10: {[E Step]}:
11: for all 1 ≤ j ≤ K do
12: Compute h

(
j | ~Xi ,ΘM

)
for i = 1, . . . ,N

13: {[M step]}:
14: update bounded support range
15: for all 1 ≤ j ≤ K do
16: Estimate pj , ~µj , ~σlj & ~σrj

17: Estimate ~η, ~δ & ~ω
18: If pj = 0, jth cluster is pruned
19: If ωd = 0, p

(
Xid | ξjd

)
is pruned

20: If ωd = 1, p (Xid | λd ) is pruned
21: Compute K∗ = arg minMML(K)
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Clustering Metrics

Clustering Metrics

� Accuracy is computed as:
(

TP+TN
TP+TN+FP+FN

)
� Precision is computed as:

(
TP

TP+FP

)
� Recall is computed as:

(
TP

TP+FN

)
� F1 Score is computed as: 2 ∗ (precision ∗ recall)/(precision + recall)

� Silhouette score indicates the overlapping clusters with the range
from -1 to 1, and 1 is the best value, -1 for the worst value, value
near 0 indicates overlapping clusters.

� Classification entropy (CE) index indicates good clustering when it
is low and poor clustering when it is high.

the term TP stands for true positives, TN for true negatives, FP for false
positives, and FN stands for false negatives
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Human Activity Categorization

Human Activity Categorization1

We consider a human activity categorization dataset called UCI Daily and
Sports Activity dataset (DSAD)1, which contains 19 different kinds of
signal data performed by eight subjects (4 female, 4 male)
Eight daily activities from the first subject, including sitting, standing,
walking, jumping, playing basketball, rowing, exercising, and running, are
chosen to be classified.

Table: 8 common daily activities, from the first subject, clustering using
different mixture models.

Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 3.11 3 96.47% 97.25% 96.47% 96.40% 0.451 0.004

BAGMM 3.04 1 95.56% 96.33% 95.56% 95.29% 0.454 1.49
AGMM-FS 2.67 38 96.37% 97.18% 96.37% 96.29% 0.451 0.002

AGMM 0.468 12 95.86% 96.89% 95.86% 95.75% 0.452 0.002
BGGMM 494.95 7 95.56% 96.33% 95.56% 95.30% 0.454 4.17e-7
GGMM 0.640 7 62.5% 43.81% 62.50% 50.03% 0.198 0.430
GMM 0.014 1 44.76% 36.74% 44.75% 34.83% 0.211 0.641

1DSAD dataset available at: http:
//archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

http://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
http://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
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Human Activity Categorization

Only BAGMM and BAGMM-FS were able to find the correct number of components
which is 8, while AGMM and AGMM-FS favored 10 clusters.
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Human Activity Categorization

Human Activity Categorization2

We also cluster different sitting activities from the 8 subjects in this
dataset. Feature selection improves the clustering results. Mixture
models without feature selection have almost the same accuracy as the
baseline GMM. Our proposed model distinguishes itself as compared to
the other mixture models with respect to all considered clustering
metrics.

Table: Clustering of the sitting activities of the 8 subjects using different
mixture models.

Models Time Epoch Accuracy Precision Recall F1-score Silhouette CE
BAGMM-FS 5.87 6 90.52% 93.13% 90.52% 89.80% 0.514 0.009

BAGMM 2.23 2 72.78% 70.88% 72.78% 71.47% 0.569 0.011
AGMM-FS 0.641 9 84.97% 78.35% 84.97% 80.43% 0.593 0.156

AGMM 0.105 1 72.47% 63.37% 72.47% 65.58% 0.624 0.384
BGGMM 107.74 16 72.47% 71.41% 72.48% 71.50% 0.495 4.4e-77
GGMM 0.237 3 72.47% 63.37% 72.47% 65.58% 0.624 0.384
GMM 0.015 1 71.67% 59.87% 71.67% 63.67% 0.556 0.383
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Gender Recognition

We verify BAGMM-FS on three well-known datasets, PARSE-27k
dataset (P27K), PETA dataset and Human attribute dataset
(H3D).
Using bag of visual words (BOVW) to describe the images:

1 extract local features for each image using scale invariant feature
transform (SIFT)

2 apply K-Means to cluster the 128-dimensional descriptors for
building the visual words vocabulary

Figure: Samples images from datasets.
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Gender Recognition

Table: Gender recognition results.

Models dataset Time Epoch Acc Precision Recall F1-score Silhouette CE
BAGMM-FS PETA 2.18 7 81.21 81.52% 81.21% 81.29% 0.018 0.170

BAGMM PETA 1.322 4 51.44 48.73% 51.44% 48.97% -0.002 0.011
AGMM-FS PETA 0.813 45 57.80 33.41% 57.80% 42.34% N/A 0.693

AGMM PETA 0.237 21 57.80 33.41% 57.80% 42.34% N/A 0.693
BGGMM PETA 15.93 3 39.59 41.91% 39.59% 36.31% 0.075 0.011
GGMM PETA 2.046 300 57.80 33.41% 57.80% 42.34% N/A 0.693
GMM PETA 0.024 1 57.80 33.41% 57.80% 42.34% N/A 0.693

BAGMM-FS P27K 3.13 5 77.33 82.49% 77.33% 67.83% -0.122 0.005
BAGMM P27K 2.02 4 50.18 82.47% 50.18% 51.47% 0.055 0.039

AGMM-FS P27K 4.10 13 76.93 59.19% 76.93% 66.90% N/A 0.693
AGMM P27K 37.61 209 76.93 59.19% 76.93% 66.90% N/A 0.693

BGGMM P27K 30.33 6 70.61 76.80% 70.61% 72.52% 0.012 0.117
GGMM P27K 1.101 3 76.93 59.19% 76.93% 66.90% N/A 0.693
GMM P27K 0.112 1 76.93 59.19% 76.93% 66.90% N/A 0.693

BAGMM-FS H3D 0.506 1 70.61 73.89% 70.61% 69.56% 0.125 0.116
BAGMM H3D 0.504 1 62.77 78.66% 62.77% 56.79% 0.110 0.007

AGMM-FS H3D 0.571 16 50.00 25.00% 50% 33.33% N/A 0.693
AGMM H3D 4.003 300 50.00 25.00% 50% 33.33% N/A 0.693

BGGMM H3D 48.073 8 61.98 62.43% 61.98% 61.62% 0.097 0.009
GGMM H3D 0.121 3 50.00 25.00% 50% 33.33% N/A 0.693
GMM H3D 0.038 1 50.00 25.00% 50% 33.33% N/A 0.693
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Conclusion

Proposed a statistical framework for simultaneous clustering
and feature selection based on BAGMM
Using EM algorithm to estimate the mixture’s parameters and
select the number of clusters by MML
Applying full dimensionalities of the data and giving a weight
to each feature automatically
Validated using two applications that involve human activity
and gender recognition
Compared with other mixture models
Demonstrated effectiveness of our model through several
performance measures
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