Model Learning

Experimental Results

Conclusion 0

Statistical Modeling Using Bounded Asymmetric Gaussian Mixtures: Application to Human Action and Gender Recognition

Zixiang Xian Muhammad Azam Nizar Bouguila

Concordia Institute for Information Systems Engineering Concordia University, Montreal, Canada

IEEE IRI February 23, 2022

Proposed Model	Model Learning	Experimental Results	Conclusion
00000	000000000	000000	

Outline

Proposed Model

Feature Selection

2 Model Learning

- E Step
- M Step
- Model selection via MML

Experimental Results

- Clustering Metrics
- Human Activity Categorization
- Gender Recognition

Proposed Model	Model Learning	Experimental Results	Conclusion
00000	000000000	000000	

Asymmetric Gaussian Distribution

- Gaussian distribution (GD) assumes that the data is symmetric and has an infinite range, which prevents it from having a good modeling capability in the presence of outliers.
- Asymmetric Gaussian distribution (AGD) has been proposed to model asymmetric real-world data by having two variance parameters controlling the left and right parts of the distribution.

Proposed Model	Model Learning	Experimental Results	Conclusion
○●○○○	0000000000	000000	0
Proposed Model			

Mixture of Asymmetric Gaussian Distributions (AGMM)

Mathmatical Definition

$$p(\mathcal{X}, \mathcal{Z} | \Theta) = \prod_{i=1}^{N} \prod_{j=1}^{K} \left(p(\vec{X}_{i} | \xi_{j}) p_{j} \right)^{Z_{ij}} \quad (1)$$

- $p\left(ec{X_{i}}|\xi_{j}
 ight)$ is the PDF of AGD
- Z_{ij} is the hidden variable which satisfy $Z_{ij} \in \{0,1\}$
- p_j are the mixing weights that satisfy $p_j \ge 0$, $\sum_{j=1}^{K} p_j = 1$.

Model Learning

Experimental Results

Mixture of Bounded Asymmetric Gaussian Distributions

$$p(\vec{X}|\xi_j) = \frac{f(\vec{X}|\xi_j)\mathsf{H}(\vec{X}|\Omega_j)}{\int_{\partial_j} f(\vec{u}|\xi_j)\mathsf{d}u}, \text{ where } \mathsf{H}(\vec{X}|\Omega_j) = \begin{cases} 1 & \text{if } \vec{X} \in \partial_j \\ 0 & \text{otherwise} \end{cases}$$
(2)

$$f(\vec{X}|\xi_j) = \prod_{d=1}^{D} \frac{2}{\sqrt{2\pi}(\sigma_{l_{jd}} + \sigma_{r_{jd}})} \begin{cases} \exp\left[-\frac{(X_d - \mu_{jd})^2}{2\sigma_{l_{jd}}^2}\right] & \text{if } X_d < \mu_{jd} \\ \exp\left[-\frac{(X_d - \mu_{jd})^2}{2\sigma_{r_{jd}}^2}\right] & \text{if } X_d \ge \mu_{jd} \end{cases}$$
(3)

where $\xi_j = (\vec{\mu}_j, \vec{\sigma_{l_j}}, \vec{\sigma_{r_j}})$ represents the parameters of AGD. Here, $\vec{\mu}_j = (\mu_{j1}, ..., \mu_{jD})$, $\vec{\sigma_{l_j}} = (\sigma_{l_{j1}}, ..., \sigma_{l_{jD}})$, and $\vec{\sigma_{r_j}} = (\sigma_{r_{j1}}, ..., \sigma_{r_{jD}})$ are the mean, left standard deviation and right standard deviation of the *D*-dimensional AGD, respectively. $f(\vec{X}|\xi_j)$ is the PDF of AGD.

the term $\int_{\partial_j} f(\vec{u}|\xi_j) du$ in Eq. (2) is the normalized constant that shows the share of $f(\vec{X}|\xi_j)$ which belongs to the support region ∂ .

Proposed Model ○○○●○	Model Learning 0000000000	Experimental Results	Conclusion 0
Feature Selection			
Feature Selection			

We can get the complete data log-likelihood by taking the logarithm of Eq. (1) as follows.

$$\log p(\mathcal{X}, Z \mid \Theta) = \sum_{i=1}^{N} \sum_{j=1}^{K} Z_{ij} \log \left[p\left(\vec{X}_i \mid \xi_j \right) p_j \right]$$
(4)

According to Eq. (4), all the *D* features in the model have the same weight which can not describe well real-world data since some of features may be irrelevant for a some specific tasks. In order to take into account the irrelevant features, we represent them by background Gaussian distribution with parameters $\vec{\lambda} = \{\vec{\eta}, \vec{\delta}\}$, where $\vec{\eta}$ and $\vec{\delta}$ represent the mean and standard deviation, respectively.

Proposed Model ○○○○●	Model Learning 0000000000	Experimental Results 000000	Conclusion 0
Feature Selection			
Feature Selection			

$$p(\vec{X}_i \mid \Theta, \vec{\lambda}, \vec{\varphi}) = \sum_{j=1}^{K} p_j \prod_{d=1}^{D} p(X_d \mid \xi_{jd})^{\varphi_d} p(X_d \mid \lambda_d)^{1-\varphi_d}$$
(5)

where $\vec{\varphi} = (\varphi_1, \cdots, \varphi_d)$ is a set of binary parameters such that if $\varphi_d = 1$ then dth feature is relevant, otherwise, $\varphi_d = 0$ for irrelevant features. Here, $\vec{\varphi}$ is considered as a hidden variable

According to [1], we can obtain:

$$p\left(\vec{X}_{i} \mid \Theta_{K}\right) = \sum_{j=1}^{K} p_{j} \prod_{d=1}^{D} \left[\omega_{d} p\left(X_{d} \mid \xi_{jd}\right) + (1 - \omega_{d}) p\left(X_{d} \mid \lambda_{d}\right)\right] \quad (6)$$

Where $p(X_d \mid \lambda_d)$ is the background Gaussian distribution with parameters $\vec{\lambda} = \{\vec{\eta}, \vec{\delta}\}$. We assume that not all the feature have the same relevancy by assigning weights to these features, denoted as $\vec{\omega} = (\omega_1, \dots, \omega_D)$, where $0 \le \omega_d \le 1$, $d = 1, \dots, D$.

Proposed Model	Model Learning ●○○○○○○○○	Experimental Results	Conclusion 0
E Step			
E Step			

For the estimation of the model's parameters, we consider the EM algorithm where we can calculate the posterior probability as following in the E-step:

$$\hat{Z}_{ij} = \frac{p_j \prod_{d=1}^{D} \phi_{ijd}}{\sum_{j=1}^{K} p_j \prod_{d=1}^{D} \phi_{ijd}}$$
(7)

where

$$\phi_{ijd} = \omega_d p\left(X_{id} \mid \xi_{jd}\right) + (1 - \omega_d) p\left(X_{id} \mid \lambda_d\right) \tag{8}$$

Mixing Parame	eter Estimation		
M Step			
Proposed Model	Model Learning	Experimental Results	Conclusion O

The log-likelihood function can be written as:

$$\mathcal{L}(\mathcal{X}, \mathcal{Z} \mid \Theta) = \sum_{i=1}^{N} \sum_{j=1}^{K} Z_{ij} \log \left(p\left(\vec{X}_{i} \mid \Theta_{K}\right) \right)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{K} Z_{ij} \left\{ \log p_{j} + \log \left[\omega_{d} p\left(\vec{X}_{i} \mid \xi_{j}\right) + (1 - \omega_{d}) p\left(\vec{X}_{i} \mid \lambda\right) \right] \right\}$$
(9)

In M-step, the parameters can be estimated by taking the gradient of the log-likelihood in the previous equation with respect to each parameters, which gives the following for the mixing weights and the mean:

Estimation of p

$$p_j^{new} = \frac{\sum_{i=1}^N h\left(j \mid \vec{X}_i, \Theta_M\right)}{N} \tag{10}$$

Proposed	Model

Model Learning

Experimental Results

M Step

Mean Parameter Estimation

Estimation of $\boldsymbol{\mu}$

$$\mu_{jd}^{new} = \frac{\sum_{i=1}^{N} \frac{\omega_d p(X_{id} \mid \xi_{jd})}{\phi_{ijd}} h\left(j \mid \vec{X}_i, \Theta_M\right) \left\{ X_{id} - \frac{\int_{\partial_j} f(\mathbf{u} \mid \xi_j)(\mathbf{u} - \mu_{jd})d\mathbf{u}}{\int_{\partial_j} f(\mathbf{u} \mid \xi_j)d\mathbf{u}} \right\}}{\sum_{i=1}^{N} \frac{\omega_d p(X_{id} \mid \xi_{jd})}{\phi_{ijd}} h\left(j \mid \vec{X}_i, \Theta_M\right)}$$
(11)

In Eq. (11), the term $\int_{\partial_j} f(\mathbf{u}|\xi_j)(\mathbf{u}-\mu_{jd})du$ is the expectation of function $(\mathbf{u}-\mu_{jd})$ under the probability distribution $f(X_d|\xi_j)$. Then, this expectation can be approximated as:

$$\int_{\partial_j} f(\mathbf{u}|\xi_j)(\mathbf{u}-\mu_{jd})d\mathbf{u} \approx \frac{1}{M} \sum_{m=1}^M (s_{m_{jd}}-\mu_{jd}) \mathsf{H}(s_{m_{jd}}|\Omega_j)$$
(12)

where $s_{m_{jd}} \sim f(\mathbf{u}|\xi_j)$ is a set of random variables drawn from the asymmetric Gaussian distribution for the particular component j of the mixture model.

Proposed Model	Model Learning	Experimental Results	Conclusion
	00000000		
M Step			

Left And Right Standard Deviation Estimation

The left and right standard deviation can be estimated by maximizing the log-likelihood function with respect to $\sigma_{l_{jd}}$ and $\sigma_{r_{jd}}$, which can be performed using Newton-Raphson method:

Estimation of σ_l and σ_r

$$\sigma_{l_{jd}}^{new} = \sigma_{l_{jd}}^{old} - \left[\left(\frac{\partial^2 \mathcal{L}(\mathcal{X}, \mathcal{Z} \mid \Theta)}{\partial \sigma_{l_{jd}}^2} \right)^{-1} \left(\frac{\partial \mathcal{L}(\mathcal{X}, \mathcal{Z} \mid \Theta)}{\partial \sigma_{l_{jd}}} \right) \right]$$
(13)
$$\sigma_{r_{jd}}^{new} = \sigma_{r_{jd}}^{old} - \left[\left(\frac{\partial^2 \mathcal{L}(\mathcal{X}, \mathcal{Z} \mid \Theta)}{\partial \sigma_{r_{jd}}^2} \right)^{-1} \left(\frac{\partial \mathcal{L}(\mathcal{X}, \mathcal{Z} \mid \Theta)}{\partial \sigma_{r_{jd}}} \right) \right]$$
(14)

The details are covered in the paper.

Proposed Model	Model Learning	Experimental Results	Conclusion
	000000000		
14.0			

Parameters of Background Gaussian Estimation

The parameters of background Gaussian can be estimated using the following equations:

$$\eta_{d}^{new} = \frac{\sum_{i=1}^{N} \left[\sum_{j=1}^{M} \frac{(1-\omega_{d})p(X_{id}|\lambda_{d})}{\phi_{ijd}} h\left(j \mid \vec{X}_{i}, \theta_{M}\right) \right] \right] X_{id}}{\sum_{i=1}^{N} \sum_{j=1}^{M} \frac{(1-\omega_{d})p(X_{id}|\lambda_{d})}{\phi_{ijd}} h\left(j \mid \vec{X}_{i}, \theta_{M}\right)}$$
(15)
$$\delta_{d}^{2^{new}} = \frac{\sum_{i=1}^{N} \left[\sum_{j=1}^{M} \frac{(1-\omega_{d})p(X_{id}|\lambda_{d})}{\phi_{ijd}} h\left(j \mid \vec{X}_{i}, \theta_{M}\right) \right] (X_{id} - \eta_{d})^{2}}{\sum_{i=1}^{N} \sum_{j=1}^{M} \frac{(1-\omega_{d})p(X_{id}|\lambda_{d})}{\phi_{ijd}} h\left(j \mid \vec{X}_{i}, \theta_{M}\right)}$$
(16)
$$\omega_{d}^{new} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \frac{\omega_{d}p(X_{id}|\xi_{jd})}{\phi_{ijd}} h\left(j \mid \vec{X}_{i}, \theta_{M}\right)}{N}$$
(17)

Proposed Model	Model Learning	Experimental Results	Conclusion 0
Model selection via MML			

Model selection criteria

EM algorithm requires an appropriate number of clusters found by model selection criteria.

- stochastic (e.g. Markov Chain Monte Carlo)
- deterministic approaches including Akaike's information criterion (AIC) [2], Schwarz's Bayesian information criterion (BIC) [3], the Laplace empirical criterion (LEC) [4] and minimum message length (MML) [1, 5], et
- re-sampling methods

The MML has been shown to have better performance among most model selection criteria in most cases.

Proposed Model	Model Learning ○○○○○○●○○○	Experimental Results 000000	Conclusion 0
Model selection via MML			
Minimum Message	Length		

MML

MessLens
$$\approx -\log p(\Theta_M) + \frac{c}{2} \left(1 + \log \frac{1}{12}\right)$$

 $+ \frac{1}{2} \log |I(\Theta_M)| - \log p(\mathcal{X} | \Theta_M)$ (18)

- $\mathbb{P} \left(\Theta_M \right)$ is prior distribution.
- \mathbb{P} $I(\Theta_M)$ denotes the Fisher information matrix.
- \bowtie log $p(\mathcal{X} | \Theta_M)$ is log-likelihood.
- $\sim c$ represents the total number of parameters, which is equal M + D + 3DM + 2D
- $|I(\Theta_M)|$ denotes the determinant of the Fisher information matrix.

Proposed Model 00000	Model Learning ○○○○○○○●○○	Experimental Results	Conclusion O					
Model selection via MML								
Minimum Message Length								

We assume that each group of parameters is independent, which allows the factorization of $p(\Theta_M)$ and $I(\Theta_M)$. Moreover, we adopt the uninformative Jeffrey's prior for each group of parameters as prior distributions without knowing the parameters.

MML can be rewritten as

MessLens
$$\approx \frac{c}{2} \left(1 + \log \frac{1}{12} \right) + \frac{c}{2} (\log N) + \frac{3M}{2} \sum_{d=1}^{D} \log \omega_d$$

 $+ \frac{3D}{2} \sum_{j=1}^{M} \log p_j + \sum_{d=1}^{D} \log (1 - \omega_d) - \log p \left(\mathcal{X} \mid \theta_M \right)$ (19)

Proposed Model	Model Learning	Experimental Results	Conclusion
	0000000000		
Model selection via MML			

Minimum Message Length

The minimization of the Eq. (19) gives the following:

$$p_{j}^{*} = \frac{\max\left(\sum_{i=1}^{N} h\left(j \mid \vec{X}_{i}, \Theta_{M}\right) - \frac{3D}{2}, 0\right)}{\sum_{j=1}^{M} \max\left(\sum_{i=1}^{N} h\left(j \mid \vec{X}_{i}, \Theta_{M}\right) - \frac{3D}{2}, 0\right)}$$
(20)

$$\omega_{d}^{*} = \frac{\max\left(\sum_{i=1}^{N}\sum_{j=1}^{M}a_{ijd} - \frac{3M}{2}, 0\right)}{\max\left(\sum_{i=1}^{N}\sum_{j=1}^{M}U_{ijd} - \frac{3M}{2}, 0\right) + \max\left(\sum_{i=1}^{N}\sum_{j=1}^{M}V_{ijd} - 1, 0\right)}$$
(21)

where

$$U_{ijd} = h\left(j \mid \vec{X}_i, \Theta_M\right) \frac{\omega_d p\left(X_{id} \mid \xi_{jd}\right)}{\phi_{ijd}}$$
(22)

$$V_{ijd} = h\left(j \mid \vec{X}_i, \Theta_M\right) \frac{(1 - \omega_d) p\left(X_{id} \mid \lambda_d\right)}{\phi_{ijd}}$$
(23)

Proposed Mo	del Model Learning	Experimental Results	Conclusion O
Model selecti	on via MML		
Alge	prithm 1 Feature Selection for B	BAGMM	
1: li 2: C	nput:Dataset $\mathcal{X} = \{\vec{X}_1, \dots, \vec{X}_N\}, t_{min}, ep$ Dutput: Θ, \mathcal{Z}, K^* .	och _{max} , K _{min} , K _{max} .	
3: fe	or $K_{min} \leq K \leq K_{max}$ do		
4:	{Initialization}:		
5:	K-Means algorithm (Compute $\vec{\mu}_1, \ldots, \vec{\mu}$	$_{K}$ & cluster assignment & $ec{\omega}$; = 0.5)
6:	for all $1 \le j \le K$ do	_	→
7:	Computation of p_j and $\{ec{\mu}_j=ec{\mu}_j,(ec{\sigma}_{l_j})\}$	& $ec{\sigma}_{r_j}){=}ec{\sigma}_j\}$ and $\lambda=\{ec{\eta}=ec{\mu}$	$\vec{\iota}_j, \vec{\delta} = \vec{\sigma}_j \}$
8:	{Expectation Maximization}:		
9:	while relative change in log-likelihood \geq	t_{min} or iterations $\leq epoch_{ma}$	x or relative
С	hanges of parameters $\geq t_{min}$ do		
10:	{[E Step]}:		
11:	for all $1 \le j \le K$ do		
12:	Compute $h\left(j \mid ec{X}_i, \Theta_M ight)$ for $i=1,.$, N	
13:	{[M step]}:		
14:	update bounded support range		
15:	for all $1 \le j \le K$ do		
16:	Estimate p_j , $ec{\mu}_j$, $ec{\sigma}_{l_j}$ & $ec{\sigma}_{r_j}$		
17:	Estimate $ec\eta$, $ec\delta$ & $ec\omega$		
18:	If $p_j = 0$, jth cluster is pruned		
19:	If $\omega_d = 0$, $p(X_{id} \xi_{jd})$ is pruned		
20:	If $\omega_d = 1$, $p(X_{id} \mid \tilde{\lambda_d})$ is pruned		
21:	Compute $K^* = \arg \min MML(K)$		

Proposed Model 00000	Model Learning	Experimental Results	Conclusion 0
Clustering Metrics			
Clustering Metri	cs		

Solution Accuracy is computed as:
$$\left(\frac{TP+TN}{TP+TN+FP+FN}\right)$$

Precision is computed as: $\left(\frac{TP}{TP+FP}\right)$

Recall is computed as: $\left(\frac{TP}{TP+FN}\right)$

F1 Score is computed as: 2 * (precision * recall)/(precision + recall)

- Silhouette score indicates the overlapping clusters with the range from -1 to 1, and 1 is the best value, -1 for the worst value, value near 0 indicates overlapping clusters.
- Classification entropy (CE) index indicates good clustering when it is low and poor clustering when it is high.

the term TP stands for true positives, TN for true negatives, FP for false positives, and FN stands for false negatives

Human Activity Categorization ¹							
Human Activity Categorization							
Proposed Model	Model Learning	Experimental Results ○●0000	Conclusion O				

We consider a human activity categorization dataset called UCI Daily and Sports Activity dataset (DSAD)¹, which contains 19 different kinds of signal data performed by eight subjects (4 female, 4 male) Eight daily activities from the first subject, including sitting, standing, walking, jumping, playing basketball, rowing, exercising, and running, are chosen to be classified.

Table: 8 common daily activities, from the first subject, clustering using different mixture models.

Models	Time	Epoch	Accuracy	Precision	Recall	F1-score	Silhouette	CE
BAGMM-FS	3.11	3	96.47%	97.25%	96.47%	96.40%	0.451	0.004
BAGMM	3.04	1	95.56%	96.33%	95.56%	95.29%	0.454	1.49
AGMM-FS	2.67	38	96.37%	97.18%	96.37%	96.29%	0.451	0.002
AGMM	0.468	12	95.86%	96.89%	95.86%	95.75%	0.452	0.002
BGGMM	494.95	7	95.56%	96.33%	95.56%	95.30%	0.454	4.17e-7
GGMM	0.640	7	62.5%	43.81%	62.50%	50.03%	0.198	0.430
GMM	0.014	1	44.76%	36.74%	44.75%	34.83%	0.211	0.641

¹**DSAD** dataset available at: http:

//archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

Proposed Model

Model Learning

Experimental Results

Conclusion 0

Human Activity Categorization

Only BAGMM and BAGMM-FS were able to find the correct number of components which is 8, while AGMM and AGMM-FS favored 10 clusters.

Proposed Model	Model Learning	Experimental Results	Conclusion					
		000000						
Human Activity Categorization								
Human Activity Categorization ²								

We also cluster different sitting activities from the 8 subjects in this dataset. **Feature selection improves the clustering results.** Mixture models without feature selection have almost the same accuracy as the baseline GMM. Our proposed model distinguishes itself as compared to the other mixture models with respect to all considered clustering metrics.

Table: Clustering of the sitting activities of the 8 subjects using different mixture models.

Models	Time	Epoch	Accuracy	Precision	Recall	F1-score	Silhouette	CE
BAGMM-FS	5.87	6	90.52%	93.13%	90.52%	89.80%	0.514	0.009
BAGMM	2.23	2	72.78%	70.88%	72.78%	71.47%	0.569	0.011
AGMM-FS	0.641	9	84.97%	78.35%	84.97%	80.43%	0.593	0.156
AGMM	0.105	1	72.47%	63.37%	72.47%	65.58%	0.624	0.384
BGGMM	107.74	16	72.47%	71.41%	72.48%	71.50%	0.495	4.4e-77
GGMM	0.237	3	72.47%	63.37%	72.47%	65.58%	0.624	0.384
GMM	0.015	1	71.67%	59.87%	71.67%	63.67%	0.556	0.383

We verify BAGMM-FS on three well-known datasets, PARSE-27k dataset (P27K), PETA dataset and Human attribute dataset (H3D).

Using bag of visual words (BOVW) to describe the images:

- extract local features for each image using scale invariant feature transform (SIFT)
- apply K-Means to cluster the 128-dimensional descriptors for building the visual words vocabulary

Figure: Samples images from datasets.

Gender Recognition				
00000	000000000	000000		
Proposed Model	Model Learning	Experimental Results	Conclusion	

Table: Gender recognition results.

Models	dataset	Time	Epoch	Acc	Precision	Recall	F1-score	Silhouette	CE
BAGMM-FS	PETA	2.18	7	81.21	81.52%	81.21%	81.29%	0.018	0.170
BAGMM	PETA	1.322	4	51.44	48.73%	51.44%	48.97%	-0.002	0.011
AGMM-FS	PETA	0.813	45	57.80	33.41%	57.80%	42.34%	N/A	0.693
AGMM	PETA	0.237	21	57.80	33.41%	57.80%	42.34%	N/A	0.693
BGGMM	PETA	15.93	3	39.59	41.91%	39.59%	36.31%	0.075	0.011
GGMM	PETA	2.046	300	57.80	33.41%	57.80%	42.34%	N/A	0.693
GMM	PETA	0.024	1	57.80	33.41%	57.80%	42.34%	N/A	0.693
BAGMM-FS	P27K	3.13	5	77.33	82.49%	77.33%	67.83%	-0.122	0.005
BAGMM	P27K	2.02	4	50.18	82.47%	50.18%	51.47%	0.055	0.039
AGMM-FS	P27K	4.10	13	76.93	59.19%	76.93%	66.90%	N/A	0.693
AGMM	P27K	37.61	209	76.93	59.19%	76.93%	66.90%	N/A	0.693
BGGMM	P27K	30.33	6	70.61	76.80%	70.61%	72.52%	0.012	0.117
GGMM	P27K	1.101	3	76.93	59.19%	76.93%	66.90%	N/A	0.693
GMM	P27K	0.112	1	76.93	59.19%	76.93%	66.90%	N/A	0.693
BAGMM-FS	H3D	0.506	1	70.61	73.89%	70.61%	69.56%	0.125	0.116
BAGMM	H3D	0.504	1	62.77	78.66%	62.77%	56.79%	0.110	0.007
AGMM-FS	H3D	0.571	16	50.00	25.00%	50%	33.33%	N/A	0.693
AGMM	H3D	4.003	300	50.00	25.00%	50%	33.33%	N/A	0.693
BGGMM	H3D	48.073	8	61.98	62.43%	61.98%	61.62%	0.097	0.009
GGMM	H3D	0.121	3	50.00	25.00%	50%	33.33%	N/A	0.693
GMM	H3D	0.038	1	50.00	25.00%	50%	33.33%	N/A	0.693

Proposed Model	Model Learning	Experimental Results	Conclusion
00000		000000	•
Conclusion			

- Proposed a statistical framework for simultaneous clustering and feature selection based on BAGMM
- Using EM algorithm to estimate the mixture's parameters and select the number of clusters by MML
- Applying full dimensionalities of the data and giving a weight to each feature automatically
- Validated using two applications that involve human activity and gender recognition
- Compared with other mixture models
- Demonstrated effectiveness of our model through several performance measures

References

For Further Reading I

Zixiang Xian, Muhammad Azam, Nizar Bouguila Statistical Modeling Using Bounded Asymmetric Gaussian Mixtures: Application to Human Action and Gender Recognition IEEE 22nd International Conference on Information Reuse and Integration for Data Science, *IEEE IRI 2021*

Q&A

References I

- M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 26, pp. 1154–1166, Sept 2004.
- H. Akaike, "A new look at the statistical model identification," *IEEE Transactions on Automatic Control*, vol. 19, pp. 716–723, December 1974.
- G. Schwarz *et al.*, "Estimating the dimension of a model," *The annals of statistics*, vol. 6, no. 2, pp. 461–464, 1978.
- G. McLachlan and D. Peel, "Finite mixture models.,(john wiley & sons: New york.)," 2000.

Appendix 000

References

References II

T. Elguebaly and N. Bouguila, "Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection," *Machine Vision and Applications*, vol. 25, no. 5, pp. 1145–1162, 2014.

Q&A

